論文の概要: Recurrent Graph Convolutional Networks for Spatiotemporal Prediction of
Snow Accumulation Using Airborne Radar
- arxiv url: http://arxiv.org/abs/2302.00817v1
- Date: Thu, 2 Feb 2023 01:40:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 15:52:01.488889
- Title: Recurrent Graph Convolutional Networks for Spatiotemporal Prediction of
Snow Accumulation Using Airborne Radar
- Title(参考訳): 空中レーダによる積雪の時空間予測のための繰り返しグラフ畳み込みネットワーク
- Authors: Benjamin Zalatan, Maryam Rahnemoonfar
- Abstract要約: 本研究では,近年の積雪量予測のために,連続的なグラフ畳み込みネットワークに基づく機械学習モデルを提案する。
その結果、同値な非幾何学的モデルや非時間的モデルよりも、モデルの性能が良く、一貫性も高いことが判明した。
- 参考スコア(独自算出の注目度): 0.38073142980732994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate prediction and estimation of annual snow accumulation has grown
in importance as we deal with the effects of climate change and the increase of
global atmospheric temperatures. Airborne radar sensors, such as the Snow
Radar, are able to measure accumulation rate patterns at a large-scale and
monitor the effects of ongoing climate change on Greenland's precipitation and
run-off. The Snow Radar's use of an ultra-wide bandwidth enables a fine
vertical resolution that helps in capturing internal ice layers. Given the
amount of snow accumulation in previous years using the radar data, in this
paper, we propose a machine learning model based on recurrent graph
convolutional networks to predict the snow accumulation in recent consecutive
years at a certain location. We found that the model performs better and with
more consistency than equivalent nongeometric and nontemporal models.
- Abstract(参考訳): 気候変動の影響と地球温暖化の増加に対処するため,年間降雪量の正確な予測と推定が重要になっている。
スノーレーダのような空中レーダーセンサーは、大規模な堆積率パターンを測定し、進行中の気候変動がグリーンランドの降水と流出に与える影響を監視することができる。
Snow Radarは超広帯域で、内部の氷層を捉えるのに役立つ垂直解像度を実現している。
本稿では,レーダーデータを用いて,過去数年間の積雪の蓄積量を考慮し,繰り返しグラフ畳み込みネットワークに基づく機械学習モデルを提案する。
その結果,同値な非幾何学的モデルや非時間的モデルよりも精度が高く,一貫性が高いことがわかった。
関連論文リスト
- Leadsee-Precip: A Deep Learning Diagnostic Model for Precipitation [0.0]
本稿では,気象循環場から降水を生成するための地球規模の深層学習モデルであるPedsee-Precipを提案する。
このモデルは、降水量予測の課題に取り組むために、情報バランススキームを利用する。
Leadsee-Precipの降水量は観測値とより一致しており、地球規模の数値天気予報モデルと競合する性能を示している。
論文 参考訳(メタデータ) (2024-11-19T16:51:56Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - GA-SmaAt-GNet: Generative Adversarial Small Attention GNet for Extreme Precipitation Nowcasting [1.642094639107215]
本稿では,極度の降水量予測のための新しい生成逆解析フレームワークであるGA-SmaAt-GNetモデルを提案する。
オランダの降水量データを用いて,SmaAt-GNetとGA-SmaAt-GNetの性能評価を行った。
論文 参考訳(メタデータ) (2024-01-18T10:53:45Z) - Prediction of Deep Ice Layer Thickness Using Adaptive Recurrent Graph
Neural Networks [0.38073142980732994]
積雪予測に適応的かつ反復的なグラフ畳み込みネットワークを用いた機械学習モデルを提案する。
我々は,従来のモデルと同等の非時間的,非幾何学的,非適応的モデルよりも,より優れた一貫性を持つモデルを見出した。
論文 参考訳(メタデータ) (2023-06-22T19:59:54Z) - Prediction of Annual Snow Accumulation Using a Recurrent Graph
Convolutional Approach [0.38073142980732994]
近年、スノーレーダーのような空中レーダーセンサーは、垂直解像度の細かい大きな領域で内部の氷層を計測できることが示されている。
本研究では,グラフアテンションネットワークに基づくモデルを用いて,より大規模なデータセット上での入力データポイントの少ない年次積雪データポイントの予測を行った。
論文 参考訳(メタデータ) (2023-06-22T19:48:34Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。