論文の概要: Cross-Frequency Time Series Meta-Forecasting
- arxiv url: http://arxiv.org/abs/2302.02077v1
- Date: Sat, 4 Feb 2023 03:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 20:22:42.562908
- Title: Cross-Frequency Time Series Meta-Forecasting
- Title(参考訳): クロス周波数時系列メタフォアキャスティング
- Authors: Mike Van Ness, Huibin Shen, Hao Wang, Xiaoyong Jin, Danielle C.
Maddix, Karthick Gopalswamy
- Abstract要約: 本稿では、周波数不変表現の学習に特化して設計された連続周波数適応器(CFA)を紹介する。
CFAは、目に見えない周波数に一般化する際のパフォーマンスを大幅に改善し、より大きなマルチ周波数データセットを予測するための第一歩となる。
- 参考スコア(独自算出の注目度): 7.809667883159047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-forecasting is a newly emerging field which combines meta-learning and
time series forecasting. The goal of meta-forecasting is to train over a
collection of source time series and generalize to new time series
one-at-a-time. Previous approaches in meta-forecasting achieve competitive
performance, but with the restriction of training a separate model for each
sampling frequency. In this work, we investigate meta-forecasting over
different sampling frequencies, and introduce a new model, the Continuous
Frequency Adapter (CFA), specifically designed to learn frequency-invariant
representations. We find that CFA greatly improves performance when
generalizing to unseen frequencies, providing a first step towards forecasting
over larger multi-frequency datasets.
- Abstract(参考訳): meta-forecastingは、メタラーニングと時系列予測を組み合わせた新しい分野だ。
meta-forecastingの目標は、ソース時系列のコレクションをトレーニングし、新しい時系列に1回ずつ一般化することだ。
メタ予測における従来のアプローチは競合性能を実現するが、サンプリング周波数ごとに個別のモデルを訓練する制限がある。
本研究では,様々なサンプリング周波数のメタフォアキャスティングを調査し,新しいモデルである連続周波数アダプタ(cfa)を導入し,周波数不変表現を学習する。
我々は、CFAが周波数を一般化する際の性能を大幅に改善し、より大規模なマルチ周波数データセットを予測するための第一歩となることを発見した。
関連論文リスト
- General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - FreqMoE: Enhancing Time Series Forecasting through Frequency Decomposition Mixture of Experts [14.01018670507771]
本稿では,時系列データを周波数帯域に分解するFreqMoEモデルを提案する。
ゲーティング機構は、周波数特性に基づいて専門家の各出力の重要度を調整する。
実験によると、FreqMoEは最先端のモデルよりも優れており、70のメトリクスのうち51で最高のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-01-25T08:25:52Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Not All Frequencies Are Created Equal:Towards a Dynamic Fusion of Frequencies in Time-Series Forecasting [9.615808695919647]
時系列予測手法は、異なるシナリオに適用する場合、柔軟であるべきです。
本稿では、各フーリエ成分を個別に予測し、異なる周波数の出力を動的に融合する周波数動的融合(FreDF)を提案する。
論文 参考訳(メタデータ) (2024-07-17T08:54:41Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
GFM(Global Forecasting Models)として知られる多くの時系列のセットでトレーニングされた予測モデルは、競争や実世界のアプリケーションを予測する上で有望な結果を示している。
本稿では,GFMモデルのベースライン精度を向上させるための,データ拡張に基づく新しい予測フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-06T13:52:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。