Deep learning-based identification of patients at increased risk of cancer using routine laboratory markers
- URL: http://arxiv.org/abs/2410.19646v1
- Date: Fri, 25 Oct 2024 15:50:27 GMT
- Title: Deep learning-based identification of patients at increased risk of cancer using routine laboratory markers
- Authors: Vivek Singh, Shikha Chaganti, Matthias Siebert, Soumya Rajesh, Andrei Puiu, Raj Gopalan, Jamie Gramz, Dorin Comaniciu, Ali Kamen,
- Abstract summary: Cancer screening involves an initial risk stratification step to determine the screening method and frequency.
For most screening programs, age and clinical risk factors such as family history are part of the initial risk stratification algorithm.
We demonstrate that the combination of simple, widely available blood tests, such as complete blood count and complete metabolic panel, could potentially be used to identify patients at risk for colorectal, liver, and lung cancers.
- Score: 2.482109221766753
- License:
- Abstract: Early screening for cancer has proven to improve the survival rate and spare patients from intensive and costly treatments due to late diagnosis. Cancer screening in the healthy population involves an initial risk stratification step to determine the screening method and frequency, primarily to optimize resource allocation by targeting screening towards individuals who draw most benefit. For most screening programs, age and clinical risk factors such as family history are part of the initial risk stratification algorithm. In this paper, we focus on developing a blood marker-based risk stratification approach, which could be used to identify patients with elevated cancer risk to be encouraged for taking a diagnostic test or participate in a screening program. We demonstrate that the combination of simple, widely available blood tests, such as complete blood count and complete metabolic panel, could potentially be used to identify patients at risk for colorectal, liver, and lung cancers with areas under the ROC curve of 0.76, 0.85, 0.78, respectively. Furthermore, we hypothesize that such an approach could not only be used as pre-screening risk assessment for individuals but also as population health management tool, for example to better interrogate the cancer risk in certain sub-populations.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Can-SAVE: Mass Cancer Risk Prediction via Survival Analysis Variables and EHR [1.29410702835589]
Specific medical cancer screening methods are often costly, time-consuming, and weakly applicable on a large scale.
This paper presents a novel Can-SAVE cancer risk assessment method combining a survival analysis approach with a gradient-boosting algorithm.
It is highly accessible and resource-efficient, utilizing only a sequence of high-level medical events.
arXiv Detail & Related papers (2023-09-26T16:15:54Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
We consider a patient risk model which has access to vital signs, lab values, and prior history but does not have access to a patient's diagnosis.
We show that such all-cause' risk models have good generalization across diagnoses but have a predictable failure mode.
We propose a fix for this problem by explicitly modeling the uncertainty in risk prediction coming from uncertainty in patient diagnoses.
arXiv Detail & Related papers (2023-06-29T23:36:04Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Pre-screening breast cancer with machine learning and deep learning [0.0]
Deep learning can be used for pre-screening cancer by analyzing demographic and anthropometric information of patients.
Deep learning model with an input-layer architecture that is fine-tuned using feature selection can effectively distinguish between patients with and without cancer.
These findings suggest that deep learning algorithms applied to cancer pre-screening offer a radiation-free, non-invasive, and affordable complement to screening methods based on imagery.
arXiv Detail & Related papers (2023-02-05T15:27:50Z) - BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for
Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and
Clinical Data [0.0]
This study uses 25 biomarkers and CXR images in predicting the risk in 930 COVID-19 patients admitted in Italy.
The proposed multimodal stacking technique produced the precision, sensitivity, and F1-score, of 89.03%, 90.44%, and 89.03%, respectively.
The nomogram-based scoring technique was able to predict the death probability of high-risk patients with an F1 score of 92.88 %.
arXiv Detail & Related papers (2022-06-15T15:23:43Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
Lung cancer is the most common cause of cancer death in the United States.
Lung cancer CT screening has been shown to reduce mortality by up to 40% and is now included in US screening guidelines.
Despite the use of standards for radiological diagnosis, persistent inter-grader variability and incomplete characterization of comprehensive imaging findings remain as limitations of current methods.
In this report, we reproduce a state-of-the-art deep learning algorithm for lung cancer risk prediction.
arXiv Detail & Related papers (2020-07-25T10:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.