論文の概要: Gibbsian polar slice sampling
- arxiv url: http://arxiv.org/abs/2302.03945v2
- Date: Sat, 20 May 2023 14:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 04:20:51.591606
- Title: Gibbsian polar slice sampling
- Title(参考訳): ギブシアン極スライスサンプリング
- Authors: Philip Sch\"ar, Michael Habeck, Daniel Rudolf
- Abstract要約: 極スライスサンプリングは分布の近似サンプリングのためのマルコフ連鎖アプローチである。
鎖の方向成分と径成分を別々に更新することにより, 偏光スライスサンプリングを模倣する試料群を得る。
対象分布に対する適切な仮定の下で,提案手法の明確な定義と収束性を証明する。
- 参考スコア(独自算出の注目度): 3.437656066916039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polar slice sampling (Roberts & Rosenthal, 2002) is a Markov chain approach
for approximate sampling of distributions that is difficult, if not impossible,
to implement efficiently, but behaves provably well with respect to the
dimension. By updating the directional and radial components of chain iterates
separately, we obtain a family of samplers that mimic polar slice sampling, and
yet can be implemented efficiently. Numerical experiments in a variety of
settings indicate that our proposed algorithm outperforms the two most closely
related approaches, elliptical slice sampling (Murray et al., 2010) and
hit-and-run uniform slice sampling (MacKay, 2003). We prove the
well-definedness and convergence of our methods under suitable assumptions on
the target distribution.
- Abstract(参考訳): 極スライスサンプリング (Roberts & Rosenthal, 2002) は、分布の近似的サンプリングのためのマルコフ連鎖アプローチであり、効率的に実装することは困難であるが、次元に関して証明可能な振る舞いをする。
チェーンの方向成分と半径成分を別々に更新することにより, 偏光スライスサンプリングを模倣するサンプリング器のファミリーを得るが, 効率よく実装できる。
様々な環境での数値実験により,提案手法は,楕円スライスサンプリング (murray et al., 2010) と均一スライスサンプリング (mackay, 2003) の2つの手法よりも優れていることが示された。
我々は,対象分布に対する適切な仮定の下での手法の well-definedness と収束性を証明する。
関連論文リスト
- Efficiently learning and sampling multimodal distributions with data-based initialization [20.575122468674536]
静止測度から少数のサンプルを与えられたマルコフ連鎖を用いて多重モーダル分布をサンプリングする問題を考察する。
マルコフ連鎖が$k$dのスペクトルギャップを持つ場合、静止分布からのサンプルは、静止測度からテレビ距離において$varepsilon$-closeの条件法則を持つサンプルを効率よく生成する。
論文 参考訳(メタデータ) (2024-11-14T01:37:02Z) - Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでのみ実行できるように並列化可能であることを示す。
また、我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでしか実行できないことを示す。
論文 参考訳(メタデータ) (2024-06-03T01:34:34Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Efficient Informed Proposals for Discrete Distributions via Newton's
Series Approximation [13.349005662077403]
我々は,強い要求を伴わずに任意の離散分布に対する勾配的提案を開発する。
提案手法は,ニュートン級数展開による離散確率比を効率よく近似する。
提案手法は,メトロポリス・ハスティングス・ステップの有無にかかわらず,コンバージェンスレートが保証されていることを実証する。
論文 参考訳(メタデータ) (2023-02-27T16:28:23Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
観測結果からサンプリング分布を学習する4つの方法を提案する。
実験により、学習されたサンプリング分布は、設計された最小縮退サンプリング分布よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2023-02-02T15:50:21Z) - A Proximal Algorithm for Sampling from Non-smooth Potentials [10.980294435643398]
非滑らかなポテンシャルからのサンプリングのための新しいMCMCアルゴリズムを提案する。
本手法は, 近似バンドル法と交互サンプリングフレームワークに基づく。
この研究の重要な貢献は、任意の凸非滑らかポテンシャルに対して制限されたガウスオラクルを実現する高速アルゴリズムである。
論文 参考訳(メタデータ) (2021-10-09T15:26:07Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
離散分布を等価なピースワイズ連続分布に変換する単純な一般フレームワークを提案する。
提案手法は,ギブスサンプリングや不連続ハミルトニアンモンテカルロといった従来のアルゴリズムよりも優れている。
我々は,この手法がバイナライズニューラルネットワーク(BNN)のアンサンブルを学習するための有望なツールであることを実証した。
さらに、そのような変換は、勾配のないカーネル化されたStein差分に簡単に適用でき、離散分布の良性(GoF)テストを実行することができる。
論文 参考訳(メタデータ) (2020-03-01T22:45:41Z) - Ensemble Slice Sampling: Parallel, black-box and gradient-free inference
for correlated & multimodal distributions [0.0]
スライスサンプリング (Slice Sampling) は、最小ハンドチューニングで目標分布の特性に適応するマルコフ連鎖モンテカルロアルゴリズムとして登場した。
本稿では,初期長さ尺度を適応的に調整することで,そのような困難を回避できるアルゴリズムであるEnsemble Slice Sampling(ESS)を紹介する。
これらのアフィン不変アルゴリズムは簡単に構築でき、手作業で調整する必要がなく、並列計算環境で容易に実装できる。
論文 参考訳(メタデータ) (2020-02-14T19:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。