論文の概要: Global and Preference-based Optimization with Mixed Variables using
Piecewise Affine Surrogates
- arxiv url: http://arxiv.org/abs/2302.04686v2
- Date: Wed, 7 Jun 2023 21:44:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 19:29:52.914255
- Title: Global and Preference-based Optimization with Mixed Variables using
Piecewise Affine Surrogates
- Title(参考訳): ピースワイズアフィンサロゲートを用いた混合変数を用いた大域的および選好的最適化
- Authors: Mengjia Zhu, Alberto Bemporad
- Abstract要約: 本稿では,線形制約付き混合変数問題の解法として,新しいサロゲートに基づく大域的最適化アルゴリズムを提案する。
本稿では,2種類の探索関数を導入し,混合整数線形計画解法を用いて実現可能な領域を効率的に探索する。
提案アルゴリズムは,既存の手法よりもよく,あるいは同等の結果が得られることが多い。
- 参考スコア(独自算出の注目度): 1.30536490219656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization problems involving mixed variables, i.e., variables of numerical
and categorical nature, can be challenging to solve, especially in the presence
of complex constraints. Moreover, when the objective function is the result of
a complicated simulation or experiment, it may be expensive to evaluate. This
paper proposes a novel surrogate-based global optimization algorithm to solve
linearly constrained mixed-variable problems up to medium-large size (around
100 variables after encoding and 20 constraints) based on constructing a
piecewise affine surrogate of the objective function over feasible samples. We
introduce two types of exploration functions to efficiently search the feasible
domain via mixed-integer linear programming solvers. We also provide a
preference-based version of the algorithm, which can be used when only pairwise
comparisons between samples can be acquired while the underlying objective
function to minimize remains unquantified. The two algorithms are tested on
mixed-variable benchmark problems with and without constraints. The results
show that, within a small number of acquisitions, the proposed algorithms can
often achieve better or comparable results than other existing methods.
- Abstract(参考訳): 混合変数、すなわち数値的およびカテゴリー的性質の変数を含む最適化問題は、特に複雑な制約が存在する場合、解決が困難である。
さらに、目的関数が複雑なシミュレーションや実験の結果である場合、評価はコストがかかる可能性がある。
本稿では,対象関数を可逆サンプル上で分割的にアフィンサロゲートすることにより,中規模(符号化後約100変数,制約20変数)までの線形制約付き混合変数問題を解くための新しいサーロゲート型大域最適化アルゴリズムを提案する。
本稿では,2種類の探索関数を導入し,混合整数線形計画解法を用いて実現可能な領域を効率的に探索する。
また,このアルゴリズムの選好ベースのバージョンも提供し,サンプル間のペアワイズ比較のみを取得可能とし,対象関数の最小化は未定のままである。
2つのアルゴリズムは、制約のない混合変数ベンチマーク問題でテストされる。
その結果,提案アルゴリズムは,少数の取得において,既存の手法よりも優れた,あるいは同等の結果が得られることがわかった。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Experience in Engineering Complex Systems: Active Preference Learning
with Multiple Outcomes and Certainty Levels [1.5257326975704795]
ブラックボックス最適化とは、目的関数と/または制約集合が未知、到達不能、あるいは存在しない問題を指す。
この特定の情報を活用するために、いわゆるActive Preference Learningと呼ばれるアルゴリズムが開発された。
我々のアプローチは、さらなる情報を効果的に活用できるような方法でアルゴリズムを拡張することを目的としている。
論文 参考訳(メタデータ) (2023-02-27T15:55:37Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - A framework for bilevel optimization that enables stochastic and global variance reduction algorithms [21.67411847762289]
双レベル最適化は、他の関数のarg最小値を含む値関数を最小化する問題である。
本稿では, 内部問題の解, 線形系の解, 主変数を同時に発展させる新しい枠組みを提案する。
我々のフレームワークにおけるSAGAアルゴリズムの適応であるSABAが$O(frac1T)$収束率を持つことを示す。
論文 参考訳(メタデータ) (2022-01-31T18:17:25Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - A Granular Sieving Algorithm for Deterministic Global Optimization [6.01919376499018]
リプシッツ連続関数に対する大域的最適化問題を解くために、勾配のない決定論的手法を開発した。
この方法は、目的関数の領域と範囲の両方で同期解析を行うグラニュラーシービングとみなすことができる。
論文 参考訳(メタデータ) (2021-07-14T10:03:03Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
本稿では, 緩やかな過度回帰の枠組みを提示し, 回帰モデルが緩やかかつスパースな変動を示すようにした。
本稿では,バイナリ凸アルゴリズムとして再構成する手法を提案する。
結果として得られたモデルは、様々なデータセット間で競合する定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-22T04:51:44Z) - Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm [80.15123031136564]
変換の値に関する事前情報がない点集合を整列するロバストな手法を提案する。
我々のアルゴリズムは変換の正規化を必要とせず、変換の値に関する事前情報がない状況に対処できる。
実験により,提案手法が最先端のアルゴリズムよりも高いロバスト性を示した。
論文 参考訳(メタデータ) (2020-07-05T15:23:33Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
我々は,非ガンスミニマックス問題のクラスを解くアルゴリズムを開発した。
また、単一または2つのミニバッチ誘導体でも機能する。
論文 参考訳(メタデータ) (2020-06-27T03:05:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。