論文の概要: High-fidelity Interpretable Inverse Rig: An Accurate and Sparse Solution
Optimizing the Quartic Blendshape Model
- arxiv url: http://arxiv.org/abs/2302.04820v2
- Date: Mon, 27 Mar 2023 09:21:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 00:34:55.887867
- Title: High-fidelity Interpretable Inverse Rig: An Accurate and Sparse Solution
Optimizing the Quartic Blendshape Model
- Title(参考訳): 高忠実解釈可能な逆リグ:四角形ブレンド形状モデルに最適化された高精度でスパースな解
- Authors: Stevo Rackovi\'c, Cl\'audia Soares, Du\v{s}an Jakoveti\'c, Zoranka
Desnica
- Abstract要約: 本研究では,現実的な人間の顔アニメーションにおける逆リグ問題を解くことで,任意の精度のブレンドシェープリグモデルに適合する手法を提案する。
提案手法は,最先端手法に匹敵するメッシュエラーの解が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a method to fit arbitrarily accurate blendshape rig models by
solving the inverse rig problem in realistic human face animation. The method
considers blendshape models with different levels of added corrections and
solves the regularized least-squares problem using coordinate descent, i.e.,
iteratively estimating blendshape weights. Besides making the optimization
easier to solve, this approach ensures that mutually exclusive controllers will
not be activated simultaneously and improves the goodness of fit after each
iteration. We show experimentally that the proposed method yields solutions
with mesh error comparable to or lower than the state-of-the-art approaches
while significantly reducing the cardinality of the weight vector (over 20
percent), hence giving a high-fidelity reconstruction of the reference
expression that is easier to manipulate in the post-production manually. Python
scripts for the algorithm will be publicly available upon acceptance of the
paper.
- Abstract(参考訳): 本研究では,人間顔アニメーションにおける逆リグ問題を解くことにより,任意の精度でブレンド形状リグモデルに適合する手法を提案する。
この方法では、追加補正のレベルが異なるブレンドシェープモデルを考慮し、座標勾配を用いて正規化された最小二乗問題を解く。
最適化の容易化に加えて、このアプローチでは、相互排他的なコントローラが同時にアクティベートされず、イテレーション毎に適合性が向上する。
提案手法は, 重みベクトル(20%以上)の濃度を著しく低下させながら, メッシュ誤差が最先端の手法と同等か低いかの解が得られることを実験的に示し, ポストプロダクションで操作しやすい参照表現の忠実度の高い再構成を可能にする。
アルゴリズム用のpythonスクリプトは、論文が受け入れられると公開される予定だ。
関連論文リスト
- Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
半/ライブラリベースのアンミックスのための新しい凸凸モデルを提案する。
スパース・アンミキシングの代替手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-01-23T10:07:41Z) - A Game of Bundle Adjustment -- Learning Efficient Convergence [11.19540223578237]
バンドル調整の収束に達するのに必要なイテレーションの数を減らす方法を示す。
この削減は古典的なアプローチの恩恵を受けており、他のバンドル調整加速度法と統合可能であることを示す。
論文 参考訳(メタデータ) (2023-08-25T09:44:45Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Distributed Solution of the Inverse Rig Problem in Blendshape Facial
Animation [0.0]
リグのインバージョンは、アバターの現実的で魅力的なパフォーマンスを可能にするため、顔アニメーションの中心である。
より高速なソリューションへのアプローチとして、顔の空間的性質を活用するクラスタリングがある。
本稿では、重なり合うコンポーネントのより確実な推定を得るために、クラスタ結合を伴ってさらに一歩進める。
論文 参考訳(メタデータ) (2023-03-11T10:34:07Z) - IKOL: Inverse kinematics optimization layer for 3D human pose and shape
estimation via Gauss-Newton differentiation [44.00115413716392]
本稿では3次元ポーズ形状推定のための逆運動層(IKOL)を提案する。
IKOLは、既存の回帰ベースのメソッドよりもはるかに多い。
より正確な3Dポーズ推定を提供する。
論文 参考訳(メタデータ) (2023-02-02T12:43:29Z) - Subpixel Heatmap Regression for Facial Landmark Localization [65.41270740933656]
熱マップ回帰法は、熱マップ符号化と復号処理の両方に関連する離散化による誤差に悩まされる。
本稿では,熱マップの符号化と復号化に基礎となる連続分布を利用した新しい手法を提案する。
我々のアプローチは、顔のランドマークのローカライゼーションに新しい最先端の結果を設定する複数のデータセット間で顕著な利得を提供する。
論文 参考訳(メタデータ) (2021-11-03T17:21:28Z) - Accurate, Interpretable, and Fast Animation: AnIterative, Sparse, and
Nonconvex Approach [0.9176056742068814]
フェイスリグは正確でなければならないと同時に、その問題を解決するために高速に計算する必要がある。
各共通アニメーションモデルのパラメータの1つは、スパーシティ正規化である。
複雑性を低減するため、パラダイム・プライマリゼーション・ミニ(MM)が適用される。
論文 参考訳(メタデータ) (2021-09-17T05:42:07Z) - Real-time Pose and Shape Reconstruction of Two Interacting Hands With a
Single Depth Camera [79.41374930171469]
本稿では,2つの強く相互作用する手の位置と形状をリアルタイムに再現する新しい手法を提案する。
われわれのアプローチは、有利なプロパティの広範なリスト、すなわちマーカーレスを組み合わせている。
過去の研究で示された複雑性レベルを超える場面で、最先端の結果を示す。
論文 参考訳(メタデータ) (2021-06-15T11:39:49Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Weighted Encoding Based Image Interpolation With Nonlocal Linear
Regression Model [8.013127492678272]
超高解像度画像では、低解像度画像は、ぼやけやノイズを伴わずに、その高解像度画像から直接ダウンサンプリングされる。
この問題に対処するために,スパース表現に基づく新しい画像モデルを提案する。
クラスタリングではなく、オンラインの適応サブ辞書を学習するための新しいアプローチ。
論文 参考訳(メタデータ) (2020-03-04T03:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。