論文の概要: Quantum Neuron Selection: Finding High Performing Subnetworks With
Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2302.05984v1
- Date: Sun, 12 Feb 2023 19:19:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 17:30:52.171216
- Title: Quantum Neuron Selection: Finding High Performing Subnetworks With
Quantum Algorithms
- Title(参考訳): 量子ニューロン選択:量子アルゴリズムによる高性能サブネットワークの探索
- Authors: Tim Whitaker
- Abstract要約: 最近、大規模でランダムなニューラルネットワークには、完全にトレーニングされたモデルだけでなく、機能する作業が含まれていることが示されている。
この洞察は、大きなランダムモデルから重みを抽出するだけで、将来のニューラルネットワークをトレーニングするための有望な道を提供する。
本稿では,このニューロン選択問題に対して量子アルゴリズムをどのように定式化して適用するかを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gradient descent methods have long been the de facto standard for training
deep neural networks. Millions of training samples are fed into models with
billions of parameters, which are slowly updated over hundreds of epochs.
Recently, it's been shown that large, randomly initialized neural networks
contain subnetworks that perform as well as fully trained models. This insight
offers a promising avenue for training future neural networks by simply pruning
weights from large, random models. However, this problem is combinatorically
hard and classical algorithms are not efficient at finding the best subnetwork.
In this paper, we explore how quantum algorithms could be formulated and
applied to this neuron selection problem. We introduce several methods for
local quantum neuron selection that reduce the entanglement complexity that
large scale neuron selection would require, making this problem more tractable
for current quantum hardware.
- Abstract(参考訳): 勾配降下法は、深層ニューラルネットワークのトレーニングのデファクトスタンダードである。
何百万ものトレーニングサンプルが、数十億のパラメータを持つモデルに供給され、数百エポックにわたって徐々に更新される。
近年、大規模でランダムに初期化されたニューラルネットワークには、完全に訓練されたモデルと同様に機能するサブネットワークが含まれていることが示されている。
この洞察は、大きなランダムモデルから重みを抽出するだけで、将来のニューラルネットワークをトレーニングするための有望な道を提供する。
しかし、この問題は組合せ的に困難であり、古典的なアルゴリズムは最良のサブネットワークを見つけるのに効率的ではない。
本稿では,量子アルゴリズムの定式化とニューロン選択問題への応用について検討する。
本稿では,大規模ニューロン選択が必要とする絡み合いの複雑さを低減するために,局所的な量子ニューロン選択法をいくつか導入する。
関連論文リスト
- Residual Random Neural Networks [0.0]
ランダムな重みを持つ単層フィードフォワードニューラルネットワークは、ニューラルネットワークの文献の中で繰り返されるモチーフである。
隠れたニューロンの数がデータサンプルの次元と等しくない場合でも,優れた分類結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-25T22:00:11Z) - On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors [2.3265565167163906]
ベイズニューラルネットワークは、ディープニューラルネットワークにおける不確実性をモデル化するための有望なアプローチである。
ニューラルネットワークの 後部分布からサンプルを生成することは 大きな課題です
この方向の進歩の1つは、モンテカルロ・マルコフ連鎖サンプリングアルゴリズムへの適応的なステップサイズの導入である。
本稿では,これらの手法が,ステップサイズやバッチサイズが小さくても,サンプリングした分布にかなりの偏りがあることを実証する。
論文 参考訳(メタデータ) (2024-03-13T15:21:14Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。