論文の概要: Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2302.06992v1
- Date: Tue, 14 Feb 2023 11:52:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 15:35:34.736808
- Title: Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain
Semantic Segmentation
- Title(参考訳): 教師なしクロスドメインセマンティクスセグメンテーションのためのハードアウェアインスタンス適応型自己学習
- Authors: Chuang Zhu, Kebin Liu, Wenqi Tang, Ke Mei, Jiaqi Zou, Tiejun Huang
- Abstract要約: セマンティックセグメンテーションの課題に対して,UDAのための適応型自己学習フレームワークを提案する。
我々は,インスタンス適応セレクタを用いた新しい擬似ラベル生成戦略を開発した。
GTA5からCityscapesへ、SynTHIAからCityscapesへ、そしてCityscapesからOxford RobotCarへの実験は、我々のアプローチの優れた性能を実証した。
- 参考スコア(独自算出の注目度): 18.807921765977415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The divergence between labeled training data and unlabeled testing data is a
significant challenge for recent deep learning models. Unsupervised domain
adaptation (UDA) attempts to solve such problem. Recent works show that
self-training is a powerful approach to UDA. However, existing methods have
difficulty in balancing the scalability and performance. In this paper, we
propose a hard-aware instance adaptive self-training framework for UDA on the
task of semantic segmentation. To effectively improve the quality and diversity
of pseudo-labels, we develop a novel pseudo-label generation strategy with an
instance adaptive selector. We further enrich the hard class pseudo-labels with
inter-image information through a skillfully designed hard-aware pseudo-label
augmentation. Besides, we propose the region-adaptive regularization to smooth
the pseudo-label region and sharpen the non-pseudo-label region. For the
non-pseudo-label region, consistency constraint is also constructed to
introduce stronger supervision signals during model optimization. Our method is
so concise and efficient that it is easy to be generalized to other UDA
methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and
Cityscapes to Oxford RobotCar demonstrate the superior performance of our
approach compared with the state-of-the-art methods.
- Abstract(参考訳): ラベル付きトレーニングデータとラベル付きテストデータとの相違は、最近のディープラーニングモデルにとって大きな課題である。
unsupervised domain adaptation (uda) はこの問題を解決しようとする。
最近の研究は、自己学習がUDAに対する強力なアプローチであることを示している。
しかし、既存の手法ではスケーラビリティと性能のバランスが難しい。
本稿では, セマンティックセグメンテーションの課題に対して, UDAのための適応型自己学習フレームワークを提案する。
擬似ラベルの品質と多様性を効果的に改善するため,インスタンス適応セレクタを用いた新しい擬似ラベル生成戦略を開発した。
さらに,ハードアウェアな擬似ラベル拡張により,画像間情報を含むハードクラス擬似ラベルをさらに充実させる。
また,疑似ラベル領域を平滑化し,非pseudo-label領域をシャープ化する領域適応正規化を提案する。
非擬似ラベル領域に対しては、モデル最適化時により強い監視信号を導入するために一貫性制約も構築される。
我々の手法は簡潔で効率的であり、他のUDA法にも容易に適用できる。
GTA5からCityscapes、SynTHIAからCityscapes、そしてCityscapesからOxford RobotCarへの実験は、最先端の手法と比較して、我々のアプローチの優れた性能を実証している。
関連論文リスト
- Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
この話題は、3次元の点雲のセグメンテーションで広く研究されている。
近年まで、擬似ラベルは、限られた地道ラベルによる訓練を容易にするために広く用いられてきた。
既存の擬似ラベリングアプローチは、重複しないデータのノイズやバリエーションに悩まされる可能性がある。
本研究では,学習用擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭める学習戦略を提案する。
論文 参考訳(メタデータ) (2024-08-29T13:31:15Z) - SAM4UDASS: When SAM Meets Unsupervised Domain Adaptive Semantic
Segmentation in Intelligent Vehicles [27.405213492173186]
SAM4UDASSは,Segment Anything Model(SAM)を擬似ラベルを書き換える自己学習 UDA 手法に組み込んだ新しいアプローチである。
Semantic-Guided Mask Labelingは、UDAの擬似ラベルを使用して、セマンティックラベルを未ラベルのSAMマスクに割り当てる。
DAFormerを使用すると、GTA5-to-Cityscapes、SynTHIA-to-Cityscapes、Cityscapes-to-ACDCで3%以上のmIoUが得られ、MICを使用するとSOTAが達成される。
論文 参考訳(メタデータ) (2023-11-22T08:29:45Z) - Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
擬似ラベルのオンライン精錬のための補助的擬似ラベル精錬ネットワーク(PRN)を提案する。
3つの異なるドメインシフトを持つベンチマークデータセットに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2023-10-25T20:31:07Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
そこで本研究では,手動のアノテーションを使わずに,自然に高いピクセルラベル品質を有する合成・クリーンなラベルから,サリエンスを学習することを提案する。
提案手法は,複数のベンチマークデータセット上で,既存の最先端の深層教師なしSOD法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-26T16:03:55Z) - STRUDEL: Self-Training with Uncertainty Dependent Label Refinement
across Domains [4.812718493682454]
ホワイトマター高輝度(WMH)セグメンテーションのための非監視領域適応(UDA)アプローチを提案する。
疑似ラベルの不確かさを予測し,不確かさの高いラベルを強調する不確実性誘導損失関数をトレーニングプロセスに統合する。
We results on WMH segmentation across datasets showed the significant improvement of STRUDEL on standard self-training。
論文 参考訳(メタデータ) (2021-04-23T13:46:26Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - Cycle Self-Training for Domain Adaptation [85.14659717421533]
Cycle Self-Training (CST) は、ドメイン間の一般化に擬似ラベルを強制する、原則付き自己学習アルゴリズムである。
CSTは目標の真理を回復し、不変の機能学習とバニラ自己訓練の両方が失敗する。
実験結果から,標準的なUDAベンチマークでは,CSTは先行技術よりも大幅に改善されていることが示唆された。
論文 参考訳(メタデータ) (2021-03-05T10:04:25Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
半教師付きドメイン適応のための強化学習に基づく選択擬似ラベル法を提案する。
高精度かつ代表的な擬似ラベルインスタンスを選択するための深層Q-ラーニングモデルを開発する。
提案手法は, SSDAのベンチマークデータセットを用いて評価し, 全ての比較手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-07T03:37:38Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
ラベルなしまたは弱いラベル付きデータを用いたトレーニングのための構造化された擬似ラベルを生成するための擬似ラベルの再設計を提案する。
提案手法の有効性を,低データと高データの両方において示す。
論文 参考訳(メタデータ) (2020-10-19T17:59:30Z) - Instance Adaptive Self-Training for Unsupervised Domain Adaptation [19.44504738538047]
セマンティックセグメンテーションの課題に対して,UDAのためのインスタンス適応型自己学習フレームワークを提案する。
擬似ラベルの品質を効果的に向上するために,インスタンス適応セレクタを用いた新しい擬似ラベル生成戦略を開発した。
我々の手法は簡潔で効率的であり、他の教師なし領域適応法に容易に一般化できる。
論文 参考訳(メタデータ) (2020-08-27T15:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。