Analysis of clinical, dosimetric and radiomic features for predicting local failure after stereotactic radiotherapy of brain metastases in malignant melanoma
- URL: http://arxiv.org/abs/2405.20825v1
- Date: Fri, 31 May 2024 14:18:37 GMT
- Title: Analysis of clinical, dosimetric and radiomic features for predicting local failure after stereotactic radiotherapy of brain metastases in malignant melanoma
- Authors: Nanna E. Hartong, Ilias Sachpazidis, Oliver Blanck, Lucas Etzel, Jan C. Peeken, Stephanie E. Combs, Horst Urbach, Maxim Zaitsev, Dimos Baltas, Ilinca Popp, Anca-Ligia Grosu, Tobias Fechter,
- Abstract summary: The aim of this study was to investigate the role of clinical, dosimetric and pretherapeutic magnetic resonance imaging (MRI) features for lesion-specific outcome prediction.
- Score: 1.813829334805839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: The aim of this study was to investigate the role of clinical, dosimetric and pretherapeutic magnetic resonance imaging (MRI) features for lesion-specific outcome prediction of stereotactic radiotherapy (SRT) in patients with brain metastases from malignant melanoma (MBM). Methods: In this multicenter, retrospective analysis, we reviewed 517 MBM from 130 patients treated with SRT (single fraction or hypofractionated). For each gross tumor volume (GTV) 1576 radiomic features (RF) were calculated (788 each for the GTV and for a 3 mm margin around the GTV). Clinical parameters, radiation dose and RF from pretherapeutic contrast-enhanced T1-weighted MRI from different institutions were evaluated with a feature processing and elimination pipeline in a nested cross-validation scheme. Results: Seventy-two (72) of 517 lesions (13.9%) showed a local failure (LF) after SRT. The processing pipeline showed clinical, dosimetric and radiomic features providing information for LF prediction. The most prominent ones were the correlation of the gray level co-occurrence matrix of the margin (hazard ratio (HR): 0.37, confidence interval (CI): 0.23-0.58) and systemic therapy before SRT (HR: 0.55, CI: 0.42-0.70). The majority of RF associated with LF was calculated in the margin around the GTV. Conclusions: Pretherapeutic MRI based RF connected with lesion-specific outcome after SRT could be identified, despite multicentric data and minor differences in imaging protocols. Image data analysis of the surrounding metastatic environment may provide therapy-relevant information with the potential to further individualize radiotherapy strategies.
Related papers
- Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Magnetic resonance delta radiomics to track radiation response in lung
tumors receiving stereotactic MRI-guided radiotherapy [0.0]
We explore the potential of delta radiomics from on-treatment magnetic resonance (MR) imaging to track radiation dose response.
Delta radiomics were correlated with radiation dose delivery and assessed for tumor control and survival.
Skewness, Elongation, and Flatness were significantly associated with local recurrence-free survival.
arXiv Detail & Related papers (2024-02-23T18:00:44Z) - Classification of Radiologically Isolated Syndrome and Clinically
Isolated Syndrome with Machine-Learning Techniques [0.0]
The unanticipated detection by magnetic resonance imaging (MRI) in the brain of asymptomatic subjects of white matter lesions suggestive of multiple sclerosis (MS) has been named radiologically isolated syndrome (RIS)
Our objective was to use machine-learning classification methods to identify morphometric measures that help to discriminate patients with RIS from those with CIS.
arXiv Detail & Related papers (2024-01-24T08:49:50Z) - Brain Tumor Recurrence vs. Radiation Necrosis Classification and Patient
Survivability Prediction [0.0]
GBM is the most aggressive brain tumor in adults that has a short survival rate even after aggressive treatment with surgery and radiation therapy.
The changes on magnetic resonance imaging (MRI) for patients with GBM after radiotherapy are indicative of radiation-induced necrosis (RN) or recurrent brain tumor (rBT)
This study proposes computational modeling with statistically rigorous repeated random sub-sampling to balance the subset sample size for rBT and RN classification.
arXiv Detail & Related papers (2023-06-05T21:39:11Z) - Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning [7.165205048529115]
We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth.
The classification is realized via the maximum-relevance minimal-redundancy (MRMR) technique and support vector machines (SVM)
The results indicate that risk stratification of BM based on radiomics and machine learning during post-SRT follow-up is possible with good accuracy and should be further pursued to personalize and improve post-SRT follow-up.
arXiv Detail & Related papers (2023-02-17T10:55:18Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Domain Adaptation of Automated Treatment Planning from Computed
Tomography to Magnetic Resonance [0.5599792629509229]
We created highly acceptable Magnetic resonance only treatment plans using a CT-trained machine learning model.
clinically significant dose deviations from the CT based plans were observed.
arXiv Detail & Related papers (2022-03-07T18:18:00Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - A multicenter study on radiomic features from T$_2$-weighted images of a
customized MR pelvic phantom setting the basis for robust radiomic models in
clinics [47.187609203210705]
2D and 3D T$$-weighted images of a pelvic phantom were acquired on three scanners.
repeatability and repositioning of radiomic features were assessed.
arXiv Detail & Related papers (2020-05-14T09:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.