論文の概要: More Data Types More Problems: A Temporal Analysis of Complexity,
Stability, and Sensitivity in Privacy Policies
- arxiv url: http://arxiv.org/abs/2302.08936v1
- Date: Fri, 17 Feb 2023 15:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 14:27:12.360208
- Title: More Data Types More Problems: A Temporal Analysis of Complexity,
Stability, and Sensitivity in Privacy Policies
- Title(参考訳): より多くのデータ型:プライバシーポリシーにおける複雑さ、安定性、感度の時間的分析
- Authors: Juniper Lovato, Philip Mueller, Parisa Suchdev, Peter S. Dodds
- Abstract要約: データブローカーとデータプロセッサは、消費者データを収集し、購入し、販売することで利益を得る、数十億ドル規模の産業の一部である。
しかし、データ収集業界には、どのような種類のデータが収集、使用、販売されているかを理解するのが難しくなる透明性がほとんどありません。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting personally identifiable information (PII) on data subjects has
become big business. Data brokers and data processors are part of a
multi-billion-dollar industry that profits from collecting, buying, and selling
consumer data. Yet there is little transparency in the data collection industry
which makes it difficult to understand what types of data are being collected,
used, and sold, and thus the risk to individual data subjects. In this study,
we examine a large textual dataset of privacy policies from 1997-2019 in order
to investigate the data collection activities of data brokers and data
processors. We also develop an original lexicon of PII-related terms
representing PII data types curated from legislative texts. This mesoscale
analysis looks at privacy policies overtime on the word, topic, and network
levels to understand the stability, complexity, and sensitivity of privacy
policies over time. We find that (1) privacy legislation correlates with
changes in stability and turbulence of PII data types in privacy policies; (2)
the complexity of privacy policies decreases over time and becomes more
regularized; (3) sensitivity rises over time and shows spikes that are
correlated with events when new privacy legislation is introduced.
- Abstract(参考訳): データ主題に関する個人識別情報(PII)の収集が大きなビジネスとなっている。
データブローカーとデータプロセッサは数十億ドル規模の業界の一部であり、消費者データの収集、売買から利益を得ている。
しかし、データ収集業界にはほとんど透明性がなく、どの種類のデータが収集、使用、販売されているかを理解することが難しく、従って個々のデータ科目にとってリスクがある。
本研究では,データブローカとデータプロセッサのデータ収集活動を調査するため,1997年から2019年にかけて,プライバシポリシの大規模テキストデータセットを調査した。
また、法律文書から算出したPIIデータ型を表すPII関連用語のオリジナル辞書を開発する。
このメソスケール分析は、時間とともにプライバシーポリシーの安定性、複雑さ、感度を理解するために、単語、トピック、ネットワークレベルにおけるプライバシーポリシーの残量を調べる。
1)プライバシ法案は,プライバシポリシにおけるpiiデータタイプの安定性と乱れの変化と相関し,(2)プライバシポリシの複雑さは時間とともに減少し,より規則化され,(3)感度は時間とともに上昇し,新たなプライバシ法案が導入された場合の事象と相関するスパイクを示す。
関連論文リスト
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Security and Privacy on Generative Data in AIGC: A Survey [17.456578314457612]
我々はAIGCにおける生成データのセキュリティとプライバシについてレビューする。
プライバシ、制御性、信頼性、コンプライアンスの基本的な性質の観点から、最先端の対策が成功した経験を明らかにする。
論文 参考訳(メタデータ) (2023-09-18T02:35:24Z) - Visualising Personal Data Flows: Insights from a Case Study of Booking.com [8.485751288361616]
本稿では、プライバシポリシから抽出した個人データフローを可視化するケーススタディとして、Booking.comを取り上げている。
消費者の個人情報の共有方法を示すことによって、私たちは質問を提起し、プライバシポリシを使用してオンラインユーザに対して、個人データフローの真の規模と状況について通知する際の課題と制限に関する議論を拡大します。
論文 参考訳(メタデータ) (2023-04-19T12:17:46Z) - Certified Data Removal in Sum-Product Networks [78.27542864367821]
収集したデータの削除は、データのプライバシを保証するのに不十分であることが多い。
UnlearnSPNは、訓練された総生産ネットワークから単一データポイントの影響を取り除くアルゴリズムである。
論文 参考訳(メタデータ) (2022-10-04T08:22:37Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - Protecting Privacy and Transforming COVID-19 Case Surveillance Datasets
for Public Use [0.4462475518267084]
CDCは、個人レベルの未確認データを管轄区域から収集し、現在800万件以上の記録を保有している。
データ要素は、有用性、公開要求、およびプライバシーの影響に基づいて含まれた。
機密情報の再識別や暴露のリスクを低減するため、特定のフィールド値が抑制された。
論文 参考訳(メタデータ) (2021-01-13T14:24:20Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
新型コロナウイルス(COVID-19)やエボラウイルス(エボラ出血熱)のようなパンデミックの状況では、医療データを共有することに関連する行動は、大規模な感染を避け、死亡者を減らすために重要である。
この意味において、許可されたブロックチェーン技術は、スマートコントラクトが管理する不変で統一された分散データベースを通じて、データのオーナシップ、透明性、セキュリティを提供する権利をユーザに与えるために登場します。
論文 参考訳(メタデータ) (2020-10-22T13:19:38Z) - Privacy Policies over Time: Curation and Analysis of a Million-Document
Dataset [6.060757543617328]
我々は,インターネットアーカイブのWayback Machineからアーカイブされたプライバシーポリシーを発見し,ダウンロードし,抽出するクローラを開発した。
私たちは、20年以上にわたって、13万以上の異なるウェブサイトにまたがる、1,071,488の英語のプライバシーポリシーのデータセットをキュレートしました。
我々のデータによると、サードパーティーのウェブサイトの自己規制は停滞しており、サードパーティの自己規制は増加しているが、オンライン広告取引団体が支配している。
論文 参考訳(メタデータ) (2020-08-20T19:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。