The battery capacity of energy-storing quantum systems
- URL: http://arxiv.org/abs/2302.09905v3
- Date: Tue, 25 Jul 2023 09:10:19 GMT
- Title: The battery capacity of energy-storing quantum systems
- Authors: Xue Yang, Yan-Han Yang, Mir Alimuddin, Raffaele Salvia, Shao-Ming Fei,
Li-Ming Zhao, Stefan Nimmrichter, Ming-Xing Luo
- Abstract summary: The capacity of a quantum battery can be directly linked with the entropy of the battery state.
The capacity of a quantum battery can be directly linked with measures of coherence and entanglement.
- Score: 6.09656856771409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum battery capacity is introduced in this letter as a figure of
merit that expresses the potential of a quantum system to store and supply
energy. It is defined as the difference between the highest and the lowest
energy that can be reached by means of the unitary evolution of the system.
This function is closely connected to the ergotropy, but it does not depend on
the temporary level of energy of the system. The capacity of a quantum battery
can be directly linked with the entropy of the battery state, as well as with
measures of coherence and entanglement.
Related papers
- Hyperbolic enhancement of a quantum battery [0.0]
We show how one can circumvent the problem of energy loss by proposing a quantum battery model.
Namely, charging the battery quadratically with a short temporal pulse induces a hyperbolic enhancement in the stored energy.
We show that when the driving is strong enough the useful work which can be extracted from the quantum battery, that is the ergotropy, is exactly equal to the stored energy.
arXiv Detail & Related papers (2024-05-19T20:13:04Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Coherence manipulation in asymmetry and thermodynamics [44.99833362998488]
In the classical regime, thermodynamic state transformations are governed by the free energy.
In the quantum regime, coherence and free energy are two independent resources.
We show that allowing along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily.
arXiv Detail & Related papers (2023-08-24T14:18:19Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Vacuum enhanced charging of a quantum battery [0.0]
We show how a purely quantum effect related to the vacuum of the electromagnetic field can enhance the charging of a quantum battery.
In particular, we demonstrate how an anti-Jaynes Cummings interaction can be used to increase the stored energy of an effective two-level atom.
arXiv Detail & Related papers (2023-01-31T13:54:14Z) - Measurement Induced Synthesis of Coherent Quantum Batteries [0.0]
We propose a conditional synthesis of $N$ independent two-level systems (TLS) with partial quantum coherence obtained from an environment to one coherent system.
The measurement process acts here as a Maxwell demon synthesizing the coherent energy of individual TLS to one large coherent quantum battery.
arXiv Detail & Related papers (2022-11-16T12:33:34Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum speed-up in collisional battery charging [0.0]
We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units.
We show that coherent protocols can yield higher charging power than any possible incoherent strategy.
arXiv Detail & Related papers (2021-05-05T04:28:43Z) - Bounds on charging power of open quantum batteries [0.0]
We study fundamental bounds on the power of open quantum batteries from the geometric point of view.
Our results show that the maximum value of both the stored work and the corresponding power is achieved in the non-Markovian underdamped regime.
arXiv Detail & Related papers (2020-03-22T05:33:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.