Data-driven prognostics based on time-frequency analysis and symbolic
recurrent neural network for fuel cells under dynamic load
- URL: http://arxiv.org/abs/2302.10771v1
- Date: Fri, 3 Feb 2023 12:52:49 GMT
- Title: Data-driven prognostics based on time-frequency analysis and symbolic
recurrent neural network for fuel cells under dynamic load
- Authors: Chu Wang, Manfeng Dou, Zhongliang Li, Rachid Outbib, Dongdong Zhao,
Jian Zuo, Yuanlin Wang, Bin Liang, Peng Wang
- Abstract summary: This work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions.
The proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost.
- Score: 10.36283155920333
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-centric prognostics is beneficial to improve the reliability and safety
of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC
operating under dynamic load, the challenges come from extracting degradation
features, improving prediction accuracy, expanding the prognostics horizon, and
reducing computational cost. To address these issues, this work proposes a
data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is
used to extract health indicator in dynamic operating conditions and
symbolic-based gated recurrent unit model is used to enhance the accuracy of
life prediction. Comparing with other state-of-the-art methods, the proposed
data-driven prognostics approach provides a competitive prognostics horizon
with lower computational cost. The prognostics performance shows consistency
and generalizability under different failure threshold settings.
Related papers
- Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks [1.4671424999873808]
Uncertainty is critical in safety-sensitive applications but is often omitted from off-the-shelf neural networks due to adverse effects on predictive performance.<n>We propose a theoretically grounded framework for post-hoc uncertainty estimation in regression tasks by fitting an auxiliary model to both original inputs and frozen model outputs.
arXiv Detail & Related papers (2025-06-01T09:13:27Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
This paper introduces KO, a novel neural gradient inspired by kinetic theory and partial differential equation (PDE) simulations.<n>We reimagine the dynamics of network parameters as the evolution of a particle system governed by kinetic principles.<n>This physics-driven approach inherently promotes parameter diversity during optimization, mitigating the phenomenon of parameter condensation.
arXiv Detail & Related papers (2025-05-20T18:00:01Z) - Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation [0.0]
Estimating physical parameters from data is a crucial application of machine learning (ML) in the physical sciences.<n>We introduce a novel approach based on Contrastive Normalizing Flows (CNFs), which achieves top performance on the HiggsML Uncertainty Challenge dataset.
arXiv Detail & Related papers (2025-05-13T16:14:34Z) - Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems [89.35169042718739]
collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers.
Recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs)
This work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA.
Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy algorithm to enhance the inversion robustness
arXiv Detail & Related papers (2025-03-01T07:15:21Z) - Nonlinear Assimilation via Score-based Sequential Langevin Sampling [5.107329143106734]
This paper presents score-based sequential Langevin sampling (SSLS)<n>The proposed method decomposes the assimilation process into alternating prediction and update steps.<n>We provide theoretical guarantees for SSLS convergence in total variation (TV) distance under certain conditions.
arXiv Detail & Related papers (2024-11-20T16:31:46Z) - Predictive Uncertainty Quantification for Bird's Eye View Segmentation: A Benchmark and Novel Loss Function [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in Bird's Eye View (BEV) segmentation.
Our study focuses on the effectiveness of quantified uncertainty in detecting misclassified and out-of-distribution pixels.
We propose a novel loss function, Uncertainty-Focal-Cross-Entropy (UFCE), specifically designed for highly imbalanced data.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
We argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness.
We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations.
arXiv Detail & Related papers (2024-05-23T13:37:26Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
We propose a method for building adaptive cross-conformal prediction intervals.
The resulting conformal prediction intervals exhibit a level of adaptivity akin to Bayesian credibility sets.
The potential applicability of the method is demonstrated in the context of surrogate modeling of an expensive-to-evaluate simulator of the clogging phenomenon in steam generators of nuclear reactors.
arXiv Detail & Related papers (2024-01-15T14:45:18Z) - Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions [0.0]
We propose an advanced machine learning-based approach that enhances flexibility and uncertainty in SED fitting.
We incorporate conformalized quantile regression to convert point predictions into error bars, enhancing interpretability and reliability.
arXiv Detail & Related papers (2023-12-21T11:27:20Z) - Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation [44.53678257757108]
We propose a new BO method that can sub-linearly converge to the objective function's global optimum.
Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process.
We demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.
arXiv Detail & Related papers (2023-06-12T03:35:45Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Deep surrogate accelerated delayed-acceptance HMC for Bayesian inference
of spatio-temporal heat fluxes in rotating disc systems [0.0]
We introduce a deep learning accelerated to methodology to solve PDE-based inverse problems with guaranteed accuracy.
This is motivated by the ill-posed problem inferring a heat-temporal parameter known as the Biot number data.
arXiv Detail & Related papers (2022-04-05T15:09:33Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Adaptive Degradation Process with Deep Learning-Driven Trajectory [5.060233857860902]
Remaining useful life (RUL) estimation is a crucial component in the implementation of intelligent predictive maintenance and health management.
This paper develops a hybrid DNN-based prognostic approach, where a Wiener-based-degradation model is enhanced with adaptive drift to characterize the system degradation.
An LSTM-CNN encoder-decoder is developed to predict future degradation trajectories by jointly learning noise coefficients as well as drift coefficients, and adaptive drift is updated via Bayesian inference.
arXiv Detail & Related papers (2021-03-22T06:00:42Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.