論文の概要: Scientific Computing with Diffractive Optical Neural Networks
- arxiv url: http://arxiv.org/abs/2302.10905v1
- Date: Sun, 12 Feb 2023 23:50:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 13:41:52.371904
- Title: Scientific Computing with Diffractive Optical Neural Networks
- Title(参考訳): 回折型光ニューラルネットワークによる科学計算
- Authors: Ruiyang Chen, Yingheng Tang, Jianzhu Ma, Weilu Gao
- Abstract要約: 我々は、科学計算のための全光再構成可能DONNシステムの展開を数値的および実験的に実証した。
DONNシステムで処理可能な画像に分類入力特徴を変換するための普遍的特徴工学手法を開発した。
- 参考スコア(独自算出の注目度): 2.580765958706854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffractive optical neural networks (DONNs) have been emerging as a
high-throughput and energy-efficient hardware platform to perform all-optical
machine learning (ML) in machine vision systems. However, the current
demonstrated applications of DONNs are largely straightforward image
classification tasks, which undermines the prospect of developing and utilizing
such hardware for other ML applications. Here, we numerically and
experimentally demonstrate the deployment of an all-optical reconfigurable
DONNs system for scientific computing, including guiding two-dimensional
quantum material synthesis, predicting the properties of nanomaterials and
small molecular cancer drugs, predicting the device response of nanopatterned
integrated photonic power splitters, and the dynamic stabilization of an
inverted pendulum with reinforcement learning. Despite a large variety of input
data structures, we develop a universal feature engineering approach to convert
categorical input features to the images that can be processed in the DONNs
system. Our results open up new opportunities of employing DONNs systems for a
broad range of ML applications.
- Abstract(参考訳): DNN(Diffractive Optical Neural Network)は、全光学機械学習(ML)をマシンビジョンシステムで実行する、高スループットでエネルギー効率のハードウェアプラットフォームとして登場している。
しかし、現在実証されているDONNの応用は、画像分類タスクがほとんどで、このようなハードウェアを他のMLアプリケーションで開発・活用する可能性を損なう。
本稿では,2次元量子物質合成の導出,ナノマテリアルと小分子癌薬の特性の予測,ナノパターン集積型フォトニックパワースプリッタのデバイス応答の予測,強化学習による倒立振子の動的安定化など,科学計算のための全光再構成DONNシステムの導入を数値解析および実験的に実証する。
入力データ構造は多種多様であるが,donnシステムで処理可能な画像にカテゴリ的入力特徴を変換するための普遍的特徴工学的手法を開発した。
この結果から,幅広いMLアプリケーションにDONNシステムを採用する新たな機会が開けた。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークのスパースでイベント駆動的な性質にインスパイアされ、超低消費電力人工知能の可能性を秘めている。
スパースSNNのハードウェア・ソフトウェア共同設計について検討し,スパース表現,ハードウェアアーキテクチャ,トレーニング技術がハードウェア効率に与える影響について検討する。
本研究の目的は,スパースSNNの計算的優位性をフル活用した,組込みニューロモルフィックシステムへの道筋を解明することである。
論文 参考訳(メタデータ) (2024-08-26T17:22:11Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Free-Space Optical Spiking Neural Network [0.0]
自由空間光深絞り畳み込みニューラルネットワーク(OSCNN)について紹介する。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
論文 参考訳(メタデータ) (2023-11-08T09:41:14Z) - Physics-aware Differentiable Discrete Codesign for Diffractive Optical
Neural Networks [12.952987240366781]
本研究は,Diffractive Optical Neural Network (DONN) の効率的なトレーニングを可能にする,新しいデバイス間ハードウェア・ソフトウェア符号フレームワークを提案する。
Gumbel-Softmaxは、現実世界のデバイスパラメータからDONNの前方関数への微分可能な離散マッピングを可能にするために使用される。
その結果,提案手法は従来の量子化法に比べて大きな利点があることがわかった。
論文 参考訳(メタデータ) (2022-09-28T17:13:28Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Scalable Nanophotonic-Electronic Spiking Neural Networks [3.9918594409417576]
スパイキングニューラルネットワーク(SNN)は、高度に並列化されたリアルタイム処理が可能な新しい計算パラダイムを提供する。
フォトニックデバイスは、SNN計算パラダイムに適合する高帯域並列アーキテクチャの設計に最適である。
CMOSとSiPhの併用技術はスケーラブルなSNNコンピューティングアーキテクチャの設計に適している。
論文 参考訳(メタデータ) (2022-08-28T06:10:06Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
物理インフォームド機械学習(PIML)は、複雑な物理的および生物学的システムをシミュレートするための有望な新しいアプローチとして登場した。
PIMLでは、物理法則を適用し、時空領域のランダムな点で評価することで得られる追加情報から、そのようなネットワークを訓練することができる。
本稿では、主にフィードフォワードニューラルネットワークと自動微分に基づく物理情報ニューラルネットワーク(PINN)を用いて、物理を機械学習に組み込む一般的なトレンドについて概説する。
論文 参考訳(メタデータ) (2022-05-16T15:46:11Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。