論文の概要: The Dormant Neuron Phenomenon in Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2302.12902v2
- Date: Tue, 13 Jun 2023 15:16:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 17:46:00.086056
- Title: The Dormant Neuron Phenomenon in Deep Reinforcement Learning
- Title(参考訳): 深部強化学習における休眠性ニューロン現象
- Authors: Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, Utku Evci
- Abstract要約: 深層強化学習において,エージェントのネットワークが不活性ニューロンの増加に悩まされる休眠性ニューロン現象を同定する。
本稿では, ドミナントニューロンを学習中にリサイクルする簡易かつ効果的な方法(ReDo)を提案する。
実験により、ReDoは休眠ニューロン数を減らし、ネットワークの表現力を維持し、性能を向上することを示した。
- 参考スコア(独自算出の注目度): 26.09145694804957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we identify the dormant neuron phenomenon in deep reinforcement
learning, where an agent's network suffers from an increasing number of
inactive neurons, thereby affecting network expressivity. We demonstrate the
presence of this phenomenon across a variety of algorithms and environments,
and highlight its effect on learning. To address this issue, we propose a
simple and effective method (ReDo) that Recycles Dormant neurons throughout
training. Our experiments demonstrate that ReDo maintains the expressive power
of networks by reducing the number of dormant neurons and results in improved
performance.
- Abstract(参考訳): 本研究では,エージェントのネットワークが不活性ニューロンの増加に苦しむ深層強化学習における休眠ニューロン現象を同定し,ネットワークの表現性に影響を及ぼす。
我々は,様々なアルゴリズムや環境にまたがるこの現象の存在を実証し,その学習への影響を強調する。
この問題に対処するために,学習中に休眠ニューロンをリサイクルする簡便で効果的な手法(redo)を提案する。
実験により、ReDoは休眠ニューロン数を減らし、ネットワークの表現力を維持し、性能を向上することを示した。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Seeking Next Layer Neurons' Attention for Error-Backpropagation-Like
Training in a Multi-Agent Network Framework [6.446189857311325]
本研究は, ニューロンの局所的な目的として, エラーのバックプロパゲーションと類似性を示すことを提案する。
本研究では,局所的な目的を最大化するために,自律神経系と自律神経系を組み合わせたニューラルネットワークについて検討する。
3つのデータセットの実験を通して、これらのマルチエージェントニューラルネットワークの学習能力を実証する。
論文 参考訳(メタデータ) (2023-10-15T21:07:09Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Biologically-inspired neuronal adaptation improves learning in neural
networks [0.7734726150561086]
人間は今でも、多くのタスクで人工知能よりも優れています。
私たちは、機械学習アルゴリズムを改善するために、脳からインスピレーションを受けています。
我々はMNISTとCIFAR-10で訓練された多層パーセプトロンと畳み込みニューラルネットワークに適応する。
論文 参考訳(メタデータ) (2022-04-08T16:16:02Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Under the Hood of Neural Networks: Characterizing Learned
Representations by Functional Neuron Populations and Network Ablations [0.3441021278275805]
学習課題を遂行するネットワーク内の単一ニューロンとニューロン群の役割について、光を当てた。
ニューロンの大きさやアクティベーションの選択性、ネットワーク性能への影響は、スタンドアローンの指標として十分ではないことが分かりました。
論文 参考訳(メタデータ) (2020-04-02T20:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。