Embedding Quantum Many-Body Scars into Decoherence-Free Subspaces
- URL: http://arxiv.org/abs/2304.08515v2
- Date: Mon, 15 Apr 2024 09:51:59 GMT
- Title: Embedding Quantum Many-Body Scars into Decoherence-Free Subspaces
- Authors: He-Ran Wang, Dong Yuan, Shun-Yao Zhang, Zhong Wang, Dong-Ling Deng, L. -M. Duan,
- Abstract summary: Quantum many-body scars are non-thermal excited eigenstates of non-integrable Hamiltonians.
We provide a framework to embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations.
We propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.
- Score: 13.75243075575507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum many-body scars are non-thermal excited eigenstates of non-integrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. In this paper, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications.We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers, and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.
Related papers
- Exploring the properties of quantum scars in a toy model [0.0]
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system.
Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics.
arXiv Detail & Related papers (2024-11-05T16:31:08Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Embedding semiclassical periodic orbits into chaotic many-body
Hamiltonians [0.05524804393257919]
We present a general construction that embeds a desired periodic orbit into a family of non-integrable many-body Hamiltonians.
By designing terms that suppress "leakage" of the dynamics outside the variational manifold, we engineer families of Floquet models that host exact scarred dynamics.
arXiv Detail & Related papers (2023-03-02T15:40:47Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Unsupervised detection of decoupled subspaces: many-body scars and
beyond [0.0]
We introduce a quantum-inspired machine learning platform based on a Quantum Variational Autoencoder (QVAE)
We demonstrate that the autoencoder trained on a scar state is able to detect the whole family of scar states sharing common features with the input state.
The possibility of an automatic detection of subspaces of scar states opens new pathways in studies of models with a weak breakdown of ergodicity.
arXiv Detail & Related papers (2022-01-18T17:48:33Z) - Observation of many-body scarring in a Bose--Hubbard quantum simulator [6.039858993863839]
We realize many-body scarring in a Bose-Hubbard quantum simulator from previously unknown initial conditions.
We demonstrate that scarring traps the many-body system in a low-entropy subspace.
arXiv Detail & Related papers (2022-01-03T19:00:00Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Chapter: Vulnerability of Quantum Information Systems to Collective Manipulation [41.94295877935867]
We present and discuss a new form of vulnerability in such systems.
Groups of adversaries can maximally disrupt these systems' global quantum state.
It will be almost impossible to detect these attacks since they do not change the Hamiltonian.
A countermeasure could be to embed future quantum technologies within redundant classical networks.
arXiv Detail & Related papers (2019-01-25T13:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.