Learning-based Calibration of Flux Crosstalk in Transmon Qubit Arrays
- URL: http://arxiv.org/abs/2303.03347v3
- Date: Wed, 6 Sep 2023 01:17:44 GMT
- Title: Learning-based Calibration of Flux Crosstalk in Transmon Qubit Arrays
- Authors: Cora N. Barrett, Amir H. Karamlou, Sarah E. Muschinske, Ilan T. Rosen,
Jochen Braum\"uller, Rabindra Das, David K. Kim, Bethany M. Niedzielski,
Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P.
Orlando, Simon Gustavsson, Jeffrey A. Grover, William D. Oliver
- Abstract summary: Superconducting quantum processors comprising flux-tunable data and coupler qubits are a promising platform for quantum computation.
Magnetic flux crosstalk between the flux-control lines and the constituent qubits impedes precision control of qubit frequencies.
We introduce a learning-based calibration protocol and demonstrate its experimental performance by calibrating an array of 16 flux-tunable transmon qubits.
- Score: 0.1950600573389501
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Superconducting quantum processors comprising flux-tunable data and coupler
qubits are a promising platform for quantum computation. However, magnetic flux
crosstalk between the flux-control lines and the constituent qubits impedes
precision control of qubit frequencies, presenting a challenge to scaling this
platform. In order to implement high-fidelity digital and analog quantum
operations, one must characterize the flux crosstalk and compensate for it. In
this work, we introduce a learning-based calibration protocol and demonstrate
its experimental performance by calibrating an array of 16 flux-tunable
transmon qubits. To demonstrate the extensibility of our protocol, we simulate
the crosstalk matrix learning procedure for larger arrays of transmon qubits.
We observe an empirically linear scaling with system size, while maintaining a
median qubit frequency error below $300$ kHz.
Related papers
- In situ mixer calibration for superconducting quantum circuits [21.239311757123467]
We introduce an in situ calibration technique and outcome-focused mixer calibration scheme using superconducting qubits.
We experimentally validate the efficacy of this technique by benchmarking single-qubit gate fidelity and qubit coherence time.
arXiv Detail & Related papers (2024-08-21T14:49:39Z) - Field-Based Formalism for Calculating Multi-Qubit Exchange Coupling Rates for Transmon Qubits [0.0]
Superconducting qubits are one of the most mature platforms for quantum computing.
Existing analysis approaches using eigenmode solvers are cumbersome, not robust, and computationally prohibitive if devices with more than a few qubits are to be analyzed.
This work begins the development of an alternative framework that we illustrate in the context of evaluating the qubit-qubit exchange coupling rate between transmon qubits.
arXiv Detail & Related papers (2024-06-08T13:31:18Z) - System Characterization of Dispersive Readout in Superconducting Qubits [37.940693612514984]
We introduce a single protocol to measure the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of superconducting qubits.
We find that the resonator linewidth is poorly controlled with a factor of 2 between the maximum and minimum measured values.
We also introduce a protocol for measuring the readout system efficiency using the same power levels as are used in typical qubit readout.
arXiv Detail & Related papers (2024-02-01T08:15:16Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Anti-crosstalk high-fidelity state discrimination for superconducting
qubits [3.886248147345244]
Current methods for classifying states of single qubit in a superconducting multi-qubit system produce fidelities lower than expected due to the existence of crosstalk.
We make the digital signal processing (DSP) system used in measurement into a shallow neural network and train it to be an optimal classifier to reduce the impact of crosstalk.
arXiv Detail & Related papers (2021-03-16T10:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.