論文の概要: Wigner kernels: body-ordered equivariant machine learning without a
basis
- arxiv url: http://arxiv.org/abs/2303.04124v1
- Date: Tue, 7 Mar 2023 18:34:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 14:19:55.024312
- Title: Wigner kernels: body-ordered equivariant machine learning without a
basis
- Title(参考訳): wigner kernels: 基礎のない体順序同変機械学習
- Authors: Filippo Bigi and Sergey N. Pozdnyakov and Michele Ceriotti
- Abstract要約: 我々は、ウィグナーカーネルの計算を伴う新しい密度ベース手法を提案する。
ウィグナー核は完全に同変で、ボディーオーダーのカーネルで、放射化学ベースに依存しないコストで反復的に計算することができる。
化学応用におけるWignerカーネルに基づくモデルの精度のいくつかの例を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning models based on a point-cloud representation of a physical
object are ubiquitous in scientific applications and particularly well-suited
to the atomic-scale description of molecules and materials. Among the many
different approaches that have been pursued, the description of local atomic
environments in terms of their neighbor densities has been used widely and very
succesfully. We propose a novel density-based method which involves computing
``Wigner kernels''. These are fully equivariant and body-ordered kernels that
can be computed iteratively with a cost that is independent of the
radial-chemical basis and grows only linearly with the maximum body-order
considered. This is in marked contrast to feature-space models, which comprise
an exponentially-growing number of terms with increasing order of correlations.
We present several examples of the accuracy of models based on Wigner kernels
in chemical applications, for both scalar and tensorial targets, reaching
state-of-the-art accuracy on the popular QM9 benchmark dataset, and we discuss
the broader relevance of these ideas to equivariant geometric machine-learning.
- Abstract(参考訳): 物理オブジェクトのポイントクラウド表現に基づく機械学習モデルは、科学応用においてユビキタスであり、特に分子や物質の原子規模の記述に適している。
追求された多くの異なるアプローチの中で、その隣の密度の観点からの局所原子環境の記述は広く、非常に成功している。
本稿では,'Wigner kernel''の計算を含む新しい密度ベース手法を提案する。
これらは、放射化学ベースに依存しないコストで反復的に計算でき、最大ボディオーダーを考慮した線形にしか成長しない完全同変でボディオーダー化されたカーネルである。
これは、相関の順序の増大とともに指数関数的に増加する項数を構成する特徴空間モデルとは対照的である。
化学応用におけるウィグナーカーネルに基づくモデルの精度の例をいくつか提示し, 一般的なQM9ベンチマークデータセットにおいて, スカラーターゲットとテンソルターゲットの両方に対して, 最先端の精度を達成し, 等変幾何機械学習に対するこれらのアイデアの広範な関連性について論じる。
関連論文リスト
- Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing [23.754664894759234]
原子学シミュレーションは 化学の進歩に不可欠です
機械学習された原子間ポテンシャルは、計算コストのごく一部でアブイニシアト法と第一原理法と同等の精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T07:31:20Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Tensor-reduced atomic density representations [0.0]
グラフニューラルネットワークは、化学元素情報を学習可能な方法で固定次元空間にマッピングすることで、スケーリングから逃れる。
我々は、標準近傍密度に基づく記述子のテンソル構造を利用して、このアプローチをテンソル分解として再考する。
そのため、化学元素の数に依存しないコンパクトなテンソル還元表現を形成する。
論文 参考訳(メタデータ) (2022-10-02T01:08:50Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
分子や物質の電子密度は、最近機械学習モデルのターゲット量として大きな注目を集めている。
最適化された高度にスパースな特徴空間における回帰問題の損失関数を最小化するための勾配に基づく手法を提案する。
予測密度から1つのコーン・シャム対角化ステップを実行し、0.1mV/原子の誤差を持つ全エネルギー成分にアクセス可能であることを示す。
論文 参考訳(メタデータ) (2022-06-28T15:35:55Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Gaussian Moments as Physically Inspired Molecular Descriptors for
Accurate and Scalable Machine Learning Potentials [0.0]
本稿では,フィードフォワードニューラルネットワークに基づく高次元ポテンシャルエネルギー表面構築のための機械学習手法を提案する。
化学空間と構成空間の両方を表すために開発されたアプローチの精度は、いくつかの確立された機械学習モデルの1つに匹敵する。
論文 参考訳(メタデータ) (2021-09-15T16:46:46Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
データセットの構造的多様性を最も効率的に表現するために選択される適応的で最適な数値ベースを構築する方法について議論します。
トレーニングデータセットごとに、この最適なベースはユニークで、プリミティブベースに関して追加のコストなしで計算することができる。
この構成が精度と計算効率のよい表現をもたらすことを実証する。
論文 参考訳(メタデータ) (2021-05-18T17:57:08Z) - The role of feature space in atomistic learning [62.997667081978825]
物理的にインスパイアされた記述子は、原子論シミュレーションへの機械学習技術の応用において重要な役割を果たしている。
異なる記述子のセットを比較するためのフレームワークを導入し、メトリクスとカーネルを使ってそれらを変換するさまざまな方法を紹介します。
原子密度のn-体相関から構築した表現を比較し,低次特徴の利用に伴う情報損失を定量的に評価した。
論文 参考訳(メタデータ) (2020-09-06T14:12:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。