論文の概要: Time optimal quantum state transfer in a fully-connected quantum
computer
- arxiv url: http://arxiv.org/abs/2303.04804v2
- Date: Mon, 27 Nov 2023 17:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 16:54:10.197936
- Title: Time optimal quantum state transfer in a fully-connected quantum
computer
- Title(参考訳): 完全接続量子コンピュータにおける時間最適量子状態移動
- Authors: Casey Jameson, Bora Basyildiz, Daniel Moore, Kyle Clark, and Zhexuan
Gong
- Abstract要約: 我々は、ハミルトニアン上の不等式制約を組み込むことのできる新しい量子ブラキストロン法を開発した。
この方法により、完全連結量子コンピュータにより実験的に実現可能なハミルトン群のサブクラスにおいて、QSTの速度に厳密な束縛を証明できる。
- 参考スコア(独自算出の注目度): 1.431386688501923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The speed limit of quantum state transfer (QST) in a system of interacting
particles is not only important for quantum information processing, but also
directly linked to Lieb-Robinson-type bounds that are crucial for understanding
various aspects of quantum many-body physics. For strongly long-range
interacting systems such as a fully-connected quantum computer, such a speed
limit is still unknown. Here we develop a new Quantum Brachistochrone method
that can incorporate inequality constraints on the Hamiltonian. This method
allows us to prove an exactly tight bound on the speed of QST on a subclass of
Hamiltonians experimentally realizable by a fully-connected quantum computer.
- Abstract(参考訳): 相互作用する粒子の系における量子状態移動(QST)の速度制限は、量子情報処理において重要であるだけでなく、量子多体物理学の様々な側面を理解するのに不可欠なリーブ・ロビンソン型境界に直接関連している。
完全接続量子コンピュータのような強長距離相互作用系では、そのような速度制限はまだ不明である。
ここでは、ハミルトニアンに不等式制約を組み込むことができる新しい量子ブラヒストローネ法を開発した。
この方法により、完全連結量子コンピュータにより実験的に実現可能なハミルトン群のサブクラスにおいて、QSTの速度に厳密な束縛を証明できる。
関連論文リスト
- Quantum Acceleration Limit [0.0]
量子加速はハミルトニアン微分のゆらぎによって上界であることが証明される。
これは量子加速限界(英語版)(QAL)につながり、量子系が加速されるのに必要な最低時間は何かという疑問に答える。
論文 参考訳(メタデータ) (2023-12-01T18:45:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Exact Quantum Speed Limits [0.0]
純状態量子系のユニタリ力学に対する正確な量子速度制限を導出する。
2次元および高次元量子系の進化時間を推定する。
結果は、量子物理学の理解に大きな影響を与えるだろう。
論文 参考訳(メタデータ) (2023-05-05T20:38:54Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Stronger Quantum Speed Limit [0.0]
任意のユニタリ進化を行う全ての量子系に対して、より強い量子速度限界(SQSL)を証明する。
より強い量子速度制限は、量子制御、量子コンピューティング、量子情報処理に幅広い応用をもたらす。
論文 参考訳(メタデータ) (2022-08-10T17:56:51Z) - The effect of quantum memory on quantum speed limit time for
CP-(in)divisible channels [0.0]
量子速度制限時間 (quantum speed limit time) は、量子系が2つの状態の間で進化するために必要な最小時間に関する制限を定義する。
量子メモリの存在が量子進化を加速させることを示す。
論文 参考訳(メタデータ) (2021-07-06T04:48:08Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
量子カーネルの利点は,大規模データセット,計測回数の少ないもの,システムノイズなどにおいて消失することを示した。
我々の研究は、NISQデバイス上で量子優位性を得るための先進量子カーネルの探索に関する理論的ガイダンスを提供する。
論文 参考訳(メタデータ) (2021-03-31T02:41:36Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Demonstration of quantum brachistochrones between distant states of an
atom [0.0]
原子波パケットを15倍の大きさで高速にコヒーレント輸送することを示す。
結果は量子状態力学の基本的な限界に光を当て、量子センシングと量子コンピューティングにおける関連する応用を見つけることが期待されている。
論文 参考訳(メタデータ) (2020-09-04T15:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。