論文の概要: Constrained Adversarial Learning for Automated Software Testing: a literature review
- arxiv url: http://arxiv.org/abs/2303.07546v3
- Date: Mon, 19 May 2025 13:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:50.847501
- Title: Constrained Adversarial Learning for Automated Software Testing: a literature review
- Title(参考訳): 自動ソフトウェアテストのための制約付き逆学習:文献レビュー
- Authors: João Vitorino, Tiago Dias, Tiago Fonseca, Eva Maia, Isabel Praça,
- Abstract要約: この文献レビューは、敵の学習やソフトウェアテストに適用される制約付きデータ生成アプローチの現状に焦点を当てている。
ホワイトボックス,グレイボックス,ブラックボックステストに特化したテストの利点と限界を分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is imperative to safeguard computer applications and information systems against the growing number of cyber-attacks. Automated software testing tools can be developed to quickly analyze many lines of code and detect vulnerabilities by generating function-specific testing data. This process draws similarities to the constrained adversarial examples generated by adversarial machine learning methods, so there could be significant benefits to the integration of these methods in testing tools to identify possible attack vectors. Therefore, this literature review is focused on the current state-of-the-art of constrained data generation approaches applied for adversarial learning and software testing, aiming to guide researchers and developers to enhance their software testing tools with adversarial testing methods and improve the resilience and robustness of their information systems. The found approaches were systematized, and the advantages and limitations of those specific for white-box, grey-box, and black-box testing were analyzed, identifying research gaps and opportunities to automate the testing tools with data generated by adversarial attacks.
- Abstract(参考訳): サイバー攻撃の増加に対して、コンピュータアプリケーションや情報システムを保護することが不可欠である。
自動ソフトウェアテストツールは、関数固有のテストデータを生成することで、多くのコード行を迅速に分析し、脆弱性を検出するために開発することができる。
このプロセスは、敵対的機械学習手法によって生成された制約された敵の例と類似しているため、攻撃ベクトルを識別するためのテストツールにおけるこれらの手法の統合には、大きなメリットがある可能性がある。
したがって,本文献レビューは,敵の学習やソフトウェアテストに適用される制約付きデータ生成手法の現状に注目し,研究者や開発者が,敵の試験手法によるソフトウェアテストツールの強化を指導し,情報システムのレジリエンスと堅牢性を向上させることを目的としている。
得られたアプローチは体系化され、ホワイトボックス、グレイボックス、ブラックボックステストに特化したテストの利点と限界が分析され、敵攻撃によって生成されたデータでテストツールを自動化するための研究のギャップと機会が特定された。
関連論文リスト
- Automated Unit Test Case Generation: A Systematic Literature Review [2.273531916003657]
このレビューは、進化的アプローチとそれらの改善と結果として生じる限界に関して、既存の知識を統合することを目的としている。
これらのアルゴリズムで使用される主要なテスト基準と、可読性やモックなどに関わる分野で現在直面している課題について検討する。
論文 参考訳(メタデータ) (2025-04-29T01:50:06Z) - Enhancing Software Vulnerability Detection Using Code Property Graphs and Convolutional Neural Networks [0.0]
本稿では,コードプロパティグラフと機械学習を組み合わせたソフトウェア脆弱性検出手法を提案する。
グラフデータに適応した畳み込みニューラルネットワークなど、さまざまなニューラルネットワークモデルを導入して、これらの表現を処理する。
コントリビューションには、ソフトウェアコードをコードプロパティグラフに変換する方法論、グラフデータのための畳み込みニューラルネットワークモデルの実装、トレーニングと評価のための包括的なデータセットの作成が含まれている。
論文 参考訳(メタデータ) (2025-03-23T19:12:07Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
進化を続ける技術的景観は、機会と脅威の両方を提供し、カオスと秩序が競合する動的な空間を作り出す。
セキュアなソフトウェアエンジニアリング(SSE)は、ソフトウェアシステムを危険にさらす脆弱性に継続的に対処しなければならない。
この論文は、AIの精度に影響を与えるドメイン固有の違いに対処することで、SSEのカオスに秩序をもたらすことを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:38:58Z) - AI-Compass: A Comprehensive and Effective Multi-module Testing Tool for AI Systems [26.605694684145313]
本研究では,AIシステムを包括的かつ効果的に評価するテストツール,ツールを設計,実装する。
このツールは、敵の堅牢性、モデル解釈可能性、およびニューロン分析を広範囲に評価する。
私たちの研究は、ランドスケープをテストするAIシステムの一般的なソリューションに光を当てています。
論文 参考訳(メタデータ) (2024-11-09T11:15:17Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Towards new challenges of modern Pentest [0.0]
本研究は,Pentestに適用される現在の方法論,ツール,潜在的な課題について,最新の体系的文献レビューから紹介することを目的としている。
また、技術自動化、攻撃的セキュリティに関連するコストの管理、Pentestを行う資格のある専門家を雇うことの難しさなど、新たな課題も提示する。
論文 参考訳(メタデータ) (2023-11-21T19:32:23Z) - Semantic Similarity-Based Clustering of Findings From Security Testing
Tools [1.6058099298620423]
特に、複数の観点からソフトウェアアーチファクトを検査した後、レポートを生成する自動セキュリティテストツールを使用するのが一般的である。
これらの重複した発見を手動で識別するには、セキュリティ専門家は時間、努力、知識といったリソースを投資する必要がある。
本研究では,意味論的に類似したセキュリティ発見のクラスタリングに自然言語処理を適用する可能性について検討した。
論文 参考訳(メタデータ) (2022-11-20T19:03:19Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
Control [67.52000805944924]
Learn then Test (LTT)は、機械学習モデルを校正するフレームワークである。
私たちの主な洞察は、リスクコントロール問題を複数の仮説テストとして再設計することです。
我々は、コンピュータビジョンの詳細な実例を用いて、コア機械学習タスクの新しいキャリブレーション手法を提供するために、我々のフレームワークを使用します。
論文 参考訳(メタデータ) (2021-10-03T17:42:03Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Interpreting Machine Learning Malware Detectors Which Leverage N-gram
Analysis [2.6397379133308214]
サイバーセキュリティアナリストは、常にルールベースや署名ベースの検出と同じくらい解釈可能で理解可能なソリューションを好む。
本研究の目的は,MLベースのマルウェア検出装置に適用した場合の,最先端のMLモデルの解釈可能性の評価である。
論文 参考訳(メタデータ) (2020-01-27T19:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。