Ultra-High-Resolution Detector Simulation with Intra-Event Aware GAN and Self-Supervised Relational Reasoning
- URL: http://arxiv.org/abs/2303.08046v2
- Date: Thu, 1 Aug 2024 05:15:43 GMT
- Title: Ultra-High-Resolution Detector Simulation with Intra-Event Aware GAN and Self-Supervised Relational Reasoning
- Authors: Baran Hashemi, Nikolai Hartmann, Sahand Sharifzadeh, James Kahn, Thomas Kuhr,
- Abstract summary: We propose Intra-Event Aware Generative Adversarial Network (IEA-GAN)
IEA-GAN approximates an event in detector simulation, generating contextualized high-resolution full detector responses with a proper inductive bias.
We demonstrate IEA-GAN's application in generating sensor-dependent images for the ultra-high-granularity Pixel Vertex Detector (PXD)
- Score: 3.6271654256803707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating high-resolution detector responses is a computationally intensive process that has long been challenging in Particle Physics. Despite the ability of generative models to streamline it, full ultra-high-granularity detector simulation still proves to be difficult as it contains correlated and fine-grained information. To overcome these limitations, we propose Intra-Event Aware Generative Adversarial Network (IEA-GAN). IEA-GAN presents a Relational Reasoning Module that approximates an event in detector simulation, generating contextualized high-resolution full detector responses with a proper relational inductive bias. IEA-GAN also introduces a Self-Supervised intra-event aware loss and Uniformity loss, significantly enhancing sample fidelity and diversity. We demonstrate IEA-GAN's application in generating sensor-dependent images for the ultra-high-granularity Pixel Vertex Detector (PXD), with more than 7.5 M information channels at the Belle II Experiment. Applications of this work span from Foundation Models for high-granularity detector simulation, such as at the HL-LHC (High Luminosity LHC), to simulation-based inference and fine-grained density estimation. To our knowledge, IEA-GAN is the first algorithm for faithful ultra-high-granularity full detector simulation with event-based reasoning.
Related papers
- Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
This thesis aims to overcome this challenge for the Pixel Vertex Detector (PXD) at the Belle II experiment.
This study introduces, for the first time, the results of using deep generative models for ultra-high granularity detector simulation in Particle Physics.
arXiv Detail & Related papers (2024-03-05T23:12:47Z) - Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions.
The complete simulation of them in a detector is a computational and storage-intensive task.
We conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures.
arXiv Detail & Related papers (2023-12-15T08:27:39Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - GAFlow: Incorporating Gaussian Attention into Optical Flow [62.646389181507764]
We push Gaussian Attention (GA) into the optical flow models to accentuate local properties during representation learning.
We introduce a novel Gaussian-Constrained Layer (GCL) which can be easily plugged into existing Transformer blocks.
For reliable motion analysis, we provide a new Gaussian-Guided Attention Module (GGAM)
arXiv Detail & Related papers (2023-09-28T07:46:01Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss [0.0]
We discuss Lamarr, a framework to speed-up the simulation production parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment.
Deep Generative Models powered by several algorithms and strategies are employed to effectively parameterize the high-level response of the single components of the LHCb detector.
arXiv Detail & Related papers (2023-03-20T20:18:04Z) - Near-optimal Policy Identification in Active Reinforcement Learning [84.27592560211909]
AE-LSVI is a novel variant of the kernelized least-squares value RL (LSVI) algorithm that combines optimism with pessimism for active exploration.
We show that AE-LSVI outperforms other algorithms in a variety of environments when robustness to the initial state is required.
arXiv Detail & Related papers (2022-12-19T14:46:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Towards Reliable Neural Generative Modeling of Detectors [0.45671221781968335]
We discuss the application of generative adversarial networks (GANs) to the simulation of the LHCb experiment events.
Results are based on the Geant4 simulation of the LHCb Cherenkov detector.
arXiv Detail & Related papers (2022-04-21T08:14:24Z) - Data Augmentation at the LHC through Analysis-specific Fast Simulation
with Deep Learning [4.666011151359189]
We present a fast simulation application based on a Deep Neural Network, designed to create large analysis-specific datasets.
We propose a novel fast-simulation workflow that starts from a large amount of generator-level events to deliver large analysis-specific samples.
arXiv Detail & Related papers (2020-10-05T07:48:45Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.