論文の概要: Online Neural Path Guiding with Normalized Anisotropic Spherical
Gaussians
- arxiv url: http://arxiv.org/abs/2303.08064v1
- Date: Sat, 11 Mar 2023 05:22:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 13:56:42.392848
- Title: Online Neural Path Guiding with Normalized Anisotropic Spherical
Gaussians
- Title(参考訳): 正規化異方性球状ガウスによるオンライン神経経路誘導
- Authors: Jiawei Huang, Akito Iizuka, Hajime Tanaka, Taku Komura, Yoshifumi
Kitamura
- Abstract要約: 1つの小さなニューラルネットワークを用いて空間変動密度モデルを学習するための新しいオンラインフレームワークを提案する。
我々のフレームワークは、段階的に分布を学習し、ウォームアップフェーズは不要である。
- 参考スコア(独自算出の注目度): 28.438196881923275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The variance reduction speed of physically-based rendering is heavily
affected by the adopted importance sampling technique. In this paper we propose
a novel online framework to learn the spatial-varying density model with a
single small neural network using stochastic ray samples. To achieve this task,
we propose a novel closed-form density model called the normalized anisotropic
spherical gaussian mixture, that can express complex irradiance fields with a
small number of parameters. Our framework learns the distribution in a
progressive manner and does not need any warm-up phases. Due to the compact and
expressive representation of our density model, our framework can be
implemented entirely on the GPU, allowing it produce high quality images with
limited computational resources.
- Abstract(参考訳): 物理ベースレンダリングのばらつき低減速度は, 重要サンプリング技術によって大きく影響を受ける。
本稿では,確率的レイサンプルを用いて,単一のニューラルネットワークを用いて空間変動密度モデルを学ぶための新しいオンラインフレームワークを提案する。
そこで本研究では, 正規化異方性球状ガウス混合と呼ばれる, 複雑な照射場を少数のパラメータで表現できる新しい閉形式密度モデルを提案する。
我々のフレームワークは、段階的に分布を学習し、ウォームアップフェーズは不要である。
密度モデルのコンパクトで表現力に富んだ表現のため、このフレームワークはgpu上で完全に実装でき、限られた計算リソースで高品質な画像を生成することができます。
関連論文リスト
- Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media [8.792248506305937]
我々は、単純なカーネルベースのボリュームプリミティブの混合物を用いて散乱媒体と放射媒体のモデリングを形式化し、一般化する。
本手法は,散乱媒体の前方および逆レンダリングのための他の形態のボリュームモデリングに代わる,コンパクトで効率的な代替手段であることを示す。
また,エパネチニコフカーネルを導入し,シーン再構築作業において従来のガウスカーネルに代わる効率的な代替手段としての可能性を示した。
論文 参考訳(メタデータ) (2024-05-24T10:42:05Z) - Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based
View Synthesis [70.40950409274312]
我々は、細い構造を再構築する能力を損なうことなく、表面への収束を促すために密度場を変更する。
また, メッシュの単純化と外観モデルの適合により, 融合型メッシュ方式を開発した。
私たちのモデルで生成されたコンパクトメッシュは、モバイルデバイス上でリアルタイムでレンダリングできます。
論文 参考訳(メタデータ) (2024-02-19T18:59:41Z) - Adaptive Shells for Efficient Neural Radiance Field Rendering [92.18962730460842]
本稿では, 表面および表面のレンダリングを円滑に遷移させるニューラル放射率の定式化を提案する。
我々の手法は、非常に高い忠実度で効率的なレンダリングを可能にする。
また,抽出したエンベロープは,アニメーションやシミュレーションなどの下流アプリケーションを可能にすることを示す。
論文 参考訳(メタデータ) (2023-11-16T18:58:55Z) - Generative Neural Fields by Mixtures of Neural Implicit Functions [43.27461391283186]
本稿では,暗黙的ベースネットワークの線形結合によって表現される生成的ニューラルネットワークを学習するための新しいアプローチを提案する。
提案アルゴリズムは,メタラーニングや自動デコーディングのパラダイムを採用することにより,暗黙のニューラルネットワーク表現とその係数を潜在空間で学習する。
論文 参考訳(メタデータ) (2023-10-30T11:41:41Z) - Adaptive Multi-NeRF: Exploit Efficient Parallelism in Adaptive Multiple
Scale Neural Radiance Field Rendering [3.8200916793910973]
ニューラル・ラジアンス・フィールド(NeRF)の最近の進歩は、3次元シーンの出現を暗黙のニューラルネットワークとして表す重要な可能性を示している。
しかし、長いトレーニングとレンダリングのプロセスは、リアルタイムレンダリングアプリケーションにこの有望なテクニックを広く採用することを妨げる。
本稿では,大規模シーンのニューラルネットワークレンダリングプロセスの高速化を目的とした適応型マルチNeRF手法を提案する。
論文 参考訳(メタデータ) (2023-10-03T08:34:49Z) - Truly Mesh-free Physics-Informed Neural Networks [3.5611181253285253]
物理インフォームドニューラルネットワーク(PINN)は、最近、ニューラルネットワークに偏微分方程式(PDE)の形で事前の物理知識を組み込む原則的な方法として登場した。
本稿では,粒子密度PINN (pdPINN) と呼ばれるメッシュフリーで適応的な手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T12:45:47Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。