Theory of the in-plane photoelectric effect in quasi-one-dimensional
electron systems
- URL: http://arxiv.org/abs/2303.08870v1
- Date: Wed, 15 Mar 2023 18:35:53 GMT
- Title: Theory of the in-plane photoelectric effect in quasi-one-dimensional
electron systems
- Authors: S. A. Mikhailov
- Abstract summary: The in-plane photoelectric (IPPE) effect is a recently discovered quantum phenomenon.
It enables efficient detection of terahertz (THz) radiation in semiconductor structures with a two-dimensional (2D) electron gas.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The in-plane photoelectric (IPPE) effect is a recently discovered [Sci. Adv.
\textbf{8}, eabi8398 (2022)] quantum phenomenon which enables efficient
detection of terahertz (THz) radiation in semiconductor structures with a
two-dimensional (2D) electron gas. Here we develop a theory of the IPPE effect
in quasi-one-dimensional electron systems in which the width of the 2D
conducting channel is so small that the transverse quantization energy is
larger than the thermal energy. We calculate the THz photoresponse of such a
system, as a function of the THz frequency, control gate voltages, and
geometrical parameters of the detector. We show that the transverse
quantization of the electron motion manifests itself in oscillating
gate-voltage dependences of the photocurrent, if the THz photon energy is less
than the one-dimensional quantization energy. Results of the theory are
applicable to any semiconductor systems with 2D electron gases, including III-V
structures, silicon-based field effect transistors, and the novel 2D layered,
graphene-related materials.
Related papers
- Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Continuous microwave photon counting by semiconductor-superconductor
hybrids [0.19791587637442667]
We present a continuous microwave photon counter based on superconducting cavity-coupled semiconductor quantum dots.
The device detects both single and multiple-photon absorption events independently, thanks to the energy tunability of a two-level double-dot absorber.
arXiv Detail & Related papers (2024-01-12T15:07:26Z) - Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit [0.0]
We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83%$) and low dark current.
These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium.
arXiv Detail & Related papers (2023-12-21T17:44:33Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - Observation of 2D Cherenkov radiation [3.8781681989221672]
In reduced dimensionality, the properties of free-electron radiation are predicted to fundamentally change.
We present the first observation of Cherenkov surface waves, wherein free electrons emit narrow-bandwidth photonic quasiparticles propagating in two-dimensions.
Our results support the recent theoretical prediction that free electrons do not always emit classical light and can instead become entangled with the photons they emit.
arXiv Detail & Related papers (2022-03-03T13:12:34Z) - Theory of the in-plane photoelectric effect in two-dimensional electron
systems [0.0]
A new photoelectric phenomenon, the in-plane photoelectric (IPPE) effect, has been recently discovered at terahertz frequencies (THz) in a GaAs/Al$_x$Ga$_1-x$As heterostructure.
We present a detailed theory of the IPPE effect providing analytical results for the THz wave generated photocurrent, the quantum efficiency, and the internal responsivity of the detector.
arXiv Detail & Related papers (2021-10-29T17:27:35Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.