論文の概要: Generative Adversarial Network for Personalized Art Therapy in Melanoma
Disease Management
- arxiv url: http://arxiv.org/abs/2303.09232v1
- Date: Thu, 16 Mar 2023 11:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 15:48:29.524020
- Title: Generative Adversarial Network for Personalized Art Therapy in Melanoma
Disease Management
- Title(参考訳): 悪性黒色腫に対するパーソナライズド・アーツ治療のためのジェネレーティブ・アドバイサル・ネットワーク
- Authors: Lennart J\"utte, Ning Wand, Bernhard Roth
- Abstract要約: メラノーマは最も致命的な皮膚がんである。
治療を受けながら患者のメンタルヘルスを維持することが重要である。
現在の治療法は個人的ではなく、患者特有のものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Melanoma is the most lethal type of skin cancer. Patients are vulnerable to
mental health illnesses which can reduce the effectiveness of the cancer
treatment and the patients adherence to drug plans. It is crucial to preserve
the mental health of patients while they are receiving treatment. However,
current art therapy approaches are not personal and unique to the patient. We
aim to provide a well-trained image style transfer model that can quickly
generate unique art from personal dermoscopic melanoma images as an additional
tool for art therapy in disease management of melanoma. Visual art appreciation
as a common form of art therapy in disease management that measurably reduces
the degree of psychological distress. We developed a network based on the
cycle-consistent generative adversarial network for style transfer that
generates personalized and unique artworks from dermoscopic melanoma images. We
developed a model that converts melanoma images into unique flower-themed
artworks that relate to the shape of the lesion and are therefore personal to
the patient. Further, we altered the initial framework and made comparisons and
evaluations of the results. With this, we increased the options in the toolbox
for art therapy in disease management of melanoma. The development of an
easy-to-use user interface ensures the availability of the approach to
stakeholders. The transformation of melanoma into flower-themed artworks is
achieved by the proposed model and the graphical user interface. This
contribution opens a new field of GANs in art therapy and could lead to more
personalized disease management.
- Abstract(参考訳): メラノーマは最も致命的な皮膚がんである。
患者は精神疾患に弱いため、がん治療の有効性と薬物計画への順守を低下させることができる。
患者が治療を受ける間、患者の精神的健康を維持することが重要である。
しかし、現在の治療法は個人的ではなく、患者特有のものである。
悪性黒色腫の病態管理における新たな治療ツールとして,個人皮膚内視鏡画像から一意のアートを迅速に生成できる,よく訓練された画像スタイルの転写モデルの提供を目標とする。
疾患管理におけるアートセラピーの一般的な形態としての視覚芸術の鑑賞は、心理的苦痛の程度を測定できる。
そこで我々は,皮膚黒色腫画像からパーソナライズされたユニークなアートワークを生成するスタイル転送のための,サイクル一貫性のある生成対向ネットワークを構築した。
そこで我々は,メラノーマ像を,病変の形状に関連する独特の花柄に変換するモデルを開発し,患者にパーソナライズした。
さらに,初期枠組みを変更し,結果の比較評価を行った。
そこで我々は,メラノーマの疾患管理における治療ツールボックスの選択肢を増やした。
使いやすいユーザインターフェースの開発は、ステークホルダへのアプローチの可用性を保証する。
花をテーマとしたアートワークへのメラノーマの変換は,提案モデルとグラフィカルユーザインタフェースによって実現されている。
この貢献により、芸術療法の新たな分野が開かれ、よりパーソナライズされた疾患管理につながる可能性がある。
関連論文リスト
- Classification of Melanocytic Nevus Images using BigTransfer (BiT) [0.0]
メラノーマ性ネビは成熟し、致命的な黒色腫を引き起こす。
現在の管理プロトコルでは、脅迫的に見えるネビを除去する。
早期診断はメラノサイトネビ分類のための信頼性の高い自動化システムを必要とする。
論文 参考訳(メタデータ) (2022-11-21T21:53:43Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Art Creation with Multi-Conditional StyleGANs [81.72047414190482]
人間のアーティストは、独特のスキル、理解、そして深い感情や感情を引き起こすアートワークを作る真の意図の組み合わせが必要です。
本研究では,多条件生成支援ネットワーク(GAN)アプローチを導入し,人間の芸術を模倣する現実的な絵画を合成する。
論文 参考訳(メタデータ) (2022-02-23T20:45:41Z) - Weakly-supervised learning for image-based classification of primary
melanomas into genomic immune subgroups [1.4585861543119112]
我々は,ギガピクセルH&E染色病理スライドを免疫サブグループに分類する深層学習モデルを開発した。
我々は、スライドレベルラベルのみを必要とするマルチインスタンス学習アプローチを活用し、注意機構を用いて、その分類に高い重要性を持つ領域をハイライトする。
論文 参考訳(メタデータ) (2022-02-23T13:57:35Z) - Early Melanoma Diagnosis with Sequential Dermoscopic Images [10.487636624052564]
悪性黒色腫早期診断のための既存のアルゴリズムは、病変の単一のタイムポイント画像を用いて開発されている。
そこで本研究では,皮膚内視鏡画像を用いた早期メラノーマ診断のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-12T13:05:41Z) - Melatect: A Machine Learning Model Approach For Identifying Malignant
Melanoma in Skin Growths [0.0]
悪性黒色腫(英: Malignant melanoma)は、転移前に悪性黒色腫が元の部位から離れた臓器で発生する一般的な皮膚がんである。
本稿では悪性黒色腫を同定する機械学習モデルであるMelatectを提案する。
論文 参考訳(メタデータ) (2021-09-07T20:05:08Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential
Dermoscopic Images [40.743870665742975]
悪性黒色腫自動診断のための既存の皮膚科医は、病変の単一点像に基づいている。
そこで本研究では,連続した皮膚内視鏡像を用いたメラノーマ診断のための自動フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-19T04:08:22Z) - Design and Development of a Web-based Tool for Inpainting of Dissected
Aortae in Angiography Images [69.14026408176609]
提案した塗布ツールは、大動脈解離を塗布するタスクに基づいてトレーニングされたニューラルネットワークを組み合わせたものである。
ツールをWebアプリケーションとして設計することにより、ニューラルネットワークの使用を簡素化し、初期学習曲線を小さくする。
論文 参考訳(メタデータ) (2020-05-06T12:22:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。