論文の概要: Recent Developments in Machine Learning Methods for Stochastic Control
and Games
- arxiv url: http://arxiv.org/abs/2303.10257v1
- Date: Fri, 17 Mar 2023 21:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 20:33:31.940592
- Title: Recent Developments in Machine Learning Methods for Stochastic Control
and Games
- Title(参考訳): 確率制御とゲームのための機械学習手法の最近の進歩
- Authors: Ruimeng Hu, Mathieu Lauri\`ere
- Abstract要約: 制御問題やゲームのための機械学習に基づく計算手法が開発されている。
本稿では,これらの手法を紹介するとともに,制御とゲームのための機械学習に関する最先端の成果を要約する。
- 参考スコア(独自算出の注目度): 3.8073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic optimal control and games have found a wide range of applications,
from finance and economics to social sciences, robotics and energy management.
Many real-world applications involve complex models which have driven the
development of sophisticated numerical methods. Recently, computational methods
based on machine learning have been developed for stochastic control problems
and games. We review such methods, with a focus on deep learning algorithms
that have unlocked the possibility to solve such problems even when the
dimension is high or when the structure is very complex, beyond what is
feasible with traditional numerical methods. Here, we consider mostly the
continuous time and continuous space setting. Many of the new approaches build
on recent neural-network based methods for high-dimensional partial
differential equations or backward stochastic differential equations, or on
model-free reinforcement learning for Markov decision processes that have led
to breakthrough results. In this paper we provide an introduction to these
methods and summarize state-of-the-art works on machine learning for stochastic
control and games.
- Abstract(参考訳): 確率的最適制御とゲームは、金融や経済学から社会科学、ロボティクス、エネルギー管理に至るまで、幅広い応用を見出している。
多くの実世界の応用は、洗練された数値手法の開発を駆動する複雑なモデルを含んでいる。
近年,確率制御問題やゲームに対して機械学習に基づく計算手法が開発されている。
このような手法を,次元が高い場合や構造が非常に複雑である場合であっても,従来の数値法で実現可能な範囲を超えて,そのような問題を解けるような深層学習アルゴリズムに焦点をあてて検討する。
ここでは、主に連続時間と連続空間の設定を考える。
新たなアプローチの多くは、高次元偏微分方程式や後方確率微分方程式に対する最近のニューラルネットワークに基づく手法や、マルコフ決定過程のモデルフリー強化学習に基づいて構築され、画期的な結果が得られた。
本稿では,これらの手法を紹介するとともに,確率制御とゲームのための機械学習に関する最先端の成果を要約する。
関連論文リスト
- Model-Based Reinforcement Learning Control of Reaction-Diffusion
Problems [0.0]
強化学習はいくつかのアプリケーション、特にゲームにおいて意思決定に応用されている。
輸送されたフィールドの流れを駆動する2つの新しい報酬関数を導入する。
その結果、これらのアプリケーションで特定の制御をうまく実装できることが判明した。
論文 参考訳(メタデータ) (2024-02-22T11:06:07Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Stochastic Delay Differential Games: Financial Modeling and Machine
Learning Algorithms [3.222802562733787]
深層学習による遅延差分ゲームの閉ループナッシュ平衡を求める数値手法を提案する。
これらのゲームは、マルチエージェント相互作用と遅延効果がモデルでしばしば望まれる特徴である金融と経済学で広く使われている。
論文 参考訳(メタデータ) (2023-07-12T21:02:45Z) - Stop overkilling simple tasks with black-box models and use transparent
models instead [57.42190785269343]
ディープラーニングアプローチは、生データから自律的に機能を抽出することができる。
これにより、機能エンジニアリングプロセスをバイパスすることができる。
ディープラーニング戦略は、しばしば精度で従来のモデルより優れている。
論文 参考訳(メタデータ) (2023-02-06T14:28:49Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Gradients are Not All You Need [28.29420710601308]
さまざまな異なる状況に現れる共通のカオスベースの障害モードについて議論する。
我々は、この失敗を研究中のシステムのヤコビアンスペクトルに遡り、この失敗が微分に基づく最適化アルゴリズムを損なうことを実践者がいつ期待するかの基準を提供する。
論文 参考訳(メタデータ) (2021-11-10T16:51:04Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
少数の専門家データからの模倣学習は、複雑な力学を持つ高次元環境では困難である。
行動クローニングは、実装の単純さと安定した収束性のために広く使われている単純な方法である。
本稿では,1つのQ-関数を学習することで,対向学習を回避する動的適応型ILを提案する。
論文 参考訳(メタデータ) (2021-06-23T03:43:10Z) - Continual Learning for Real-World Autonomous Systems: Algorithms,
Challenges and Frameworks [15.276951055528237]
我々は、時間とともに計算モデルの継続的な学習を可能にする最先端の手法についてレビューする。
我々は、かなり大きな(あるいは無限の)シーケンシャルデータからオンライン形式で継続的学習を行う学習アルゴリズムに焦点を当てる。
我々は、自律現実システムにおける継続的学習に関連する重要な課題を批判的に分析する。
論文 参考訳(メタデータ) (2021-05-26T07:38:20Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。