Relations between quantum metrology and criticality in general su(1, 1) systems
- URL: http://arxiv.org/abs/2303.10655v3
- Date: Tue, 30 Jul 2024 04:51:06 GMT
- Title: Relations between quantum metrology and criticality in general su(1, 1) systems
- Authors: Rui Zhang, Wenkui Ding, Zhucheng Zhang, Lei Shao, Yuyu Zhang, Xiaoguang Wang,
- Abstract summary: We show that the determination of the generator in the parameterization can be treated as an extended brachistochrone problem.
By investigating the dynamic sensing proposals of three quantum critical systems, we show that the behavior of sensitivity is consistent with our predictions.
- Score: 10.335953738568353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a prevalent effort to achieve quantum-enhanced metrology using criticality. However, the extent to which estimation precision is enhanced through criticality still needs further exploration under the constraint of finite time resources. We clarify relations between quantum metrology and criticality through a unitary parametrization process with a Hamiltonian governed by su(1, 1) Lie algebra. We demonstrate that the determination of the generator in the parameterization can be treated as an extended brachistochrone problem. Furthermore, the dynamic quantum Fisher information about the parameter exhibits a power-law dependence on the evolution time as the system approaches its critical point. By investigating the dynamic sensing proposals of three quantum critical systems, we show that the asymptotic behavior of sensitivity is consistent with our predictions. Our theory provides a deep understanding on the interplay of quantum metrology and criticality, providing insights into the underlying connections that involve both quantum phenomena and classical problems.
Related papers
- Hybrid Quantum-Classical Clustering for Preparing a Prior Distribution of Eigenspectrum [10.950807972899575]
We consider preparing the prior distribution and circuits for the eigenspectrum of time-independent Hamiltonians.
The proposed algorithm unfolds in three strategic steps: Hamiltonian transformation, parameter representation, and classical clustering.
The algorithm is showcased through applications to the 1D Heisenberg system and the LiH molecular system.
arXiv Detail & Related papers (2024-06-29T14:21:55Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum metrology with boundary time crystals [0.0]
We show that a transition from a symmetry unbroken into a boundary time crystal phase reveals quantum-enhanced sensitivity quantified through quantum Fisher information.
Our scheme is indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensitivity.
arXiv Detail & Related papers (2023-01-05T15:15:38Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Criticality-Enhanced Quantum Sensing via Continuous Measurement [1.433758865948252]
We propose a protocol for criticality-enhanced sensing via continuous observation of the emitted radiation quanta.
We derive universal scaling laws featuring transient and long-time behavior governed by the underlying critical exponents.
Our protocol is applicable to generic quantum-optical open sensors permitting continuous readout.
arXiv Detail & Related papers (2021-08-13T18:01:02Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.