論文の概要: Fidelity Out-of-Time-Order Correlator in the Spin-Boson Model
- arxiv url: http://arxiv.org/abs/2303.12276v1
- Date: Wed, 22 Mar 2023 03:02:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 15:39:06.869239
- Title: Fidelity Out-of-Time-Order Correlator in the Spin-Boson Model
- Title(参考訳): スピンボーソン模型における時間外コリレータの忠実性
- Authors: Ruofan Chen
- Abstract要約: ゼロ温度での非偏光スピン-ボソンモデルにおける時間外相関器(FOTOC)について検討した。
FOTOCの初期指数的成長の後、系力学の情報はFOTOCに結合することが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, using the numerically exact time-evolving matrix product
operators method, we study the fidelity out-of-time-order correlator (FOTOC) in
the unbiased spin-boson model at zero temperature. It is found that after the
initial exponential growth of FOTOC, the information of the system dynamics
will adulterate into the FOTOC. This makes the FOTOC an advanced epitome of the
system dynamics, i.e., the FOTOC shows similar behavior to that of system
dynamics within a shorter time interval. Eventually the progress of the FOTOC
is ahead of the system dynamics, which can provide a prediction of the system
dynamics.
- Abstract(参考訳): 本稿では, 数値的に正確な時間進化行列積演算子法を用いて, 非バイアススピン-ボソンモデルにおける時間外相関器(FOTOC)の温度0。
FOTOCの初期指数的成長の後、系力学の情報はFOTOCに結合することが判明した。
これにより、fotocはシステムダイナミクスの先進的なエピトームとなり、すなわち、fotocは短い時間間隔内でシステムダイナミクスと類似した振る舞いを示す。
結局のところ、FOTOCの進歩はシステムダイナミクスよりも先行しており、システムダイナミクスの予測を提供することができる。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
連続グラフニューラルネットワークに基づく常微分方程式(GraphODE)により予測される前後の軌跡を整列するソフト制約として,単純かつ効果的な自己監督型正規化項を提案する。
時間反転対称性を効果的に課し、古典力学の下でより広い範囲の力学系にわたってより正確なモデル予測を可能にする。
様々な物理システムに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-10-10T08:52:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Statistical and machine learning approaches for prediction of long-time
excitation energy transfer dynamics [0.0]
ここでの目的は、SARIMA、CatBoost、Prophet、畳み込み、反復ニューラルネットワークのようなモデルがこの要件を回避できるかどうかを示すことである。
以上の結果から,SARIMAモデルが長期力学の予測を行うための計算コストが安価かつ正確な方法として機能することが示唆された。
論文 参考訳(メタデータ) (2022-10-25T16:50:26Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
量子情報力学と熱化を特徴付けるツールとして、OTOC(Out-of-time-orderor)が確立されている。
我々は、OTOCが、ETH(Eigenstate Thermalisation hypothesis)の詳細な詳細を調査するための、本当に正確なツールであることを明確に示している。
無限温度状態における局所作用素の和からなる可観測物の一般クラスに対して、$omega_textrmGOE$の有限サイズスケーリングを推定する。
論文 参考訳(メタデータ) (2021-03-01T17:51:46Z) - Beyond Occam's Razor in System Identification: Double-Descent when
Modeling Dynamics [0.0]
システム識別は、データから動的システムのモデルを構築することを目的とする。
モデル検証性能はモデル複雑性が増加するにつれてU字型曲線に従うことが典型的に観察される。
機械学習と統計学の最近の進歩は、このu字型モデルパフォーマンス曲線を「二重線」曲線が乗じる状況を観察している。
論文 参考訳(メタデータ) (2020-12-11T13:34:56Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Physics-Incorporated Convolutional Recurrent Neural Networks for Source
Identification and Forecasting of Dynamical Systems [10.689157154434499]
本稿では,数値物理学に基づくモデルと深層学習を組み合わせたハイブリッドフレームワークを提案する。
我々は、我々のモデルであるPhICNetを、S時間進化を予測するためのエンドツーエンドのトレーニングが可能な畳み込みリカレントニューラルネットワーク(RNN)として定式化する。
実験結果から,提案モデルが比較的長期間にわたって力学を予測し,情報源も同定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-14T00:27:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。