論文の概要: Physics-Incorporated Convolutional Recurrent Neural Networks for Source
Identification and Forecasting of Dynamical Systems
- arxiv url: http://arxiv.org/abs/2004.06243v3
- Date: Tue, 31 Aug 2021 03:03:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 08:48:49.996964
- Title: Physics-Incorporated Convolutional Recurrent Neural Networks for Source
Identification and Forecasting of Dynamical Systems
- Title(参考訳): 物理を組み込んだ畳み込みリカレントニューラルネットワークによる力学系の音源同定と予測
- Authors: Priyabrata Saha, Saurabh Dash, Saibal Mukhopadhyay
- Abstract要約: 本稿では,数値物理学に基づくモデルと深層学習を組み合わせたハイブリッドフレームワークを提案する。
我々は、我々のモデルであるPhICNetを、S時間進化を予測するためのエンドツーエンドのトレーニングが可能な畳み込みリカレントニューラルネットワーク(RNN)として定式化する。
実験結果から,提案モデルが比較的長期間にわたって力学を予測し,情報源も同定できることが示唆された。
- 参考スコア(独自算出の注目度): 10.689157154434499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal dynamics of physical processes are generally modeled using
partial differential equations (PDEs). Though the core dynamics follows some
principles of physics, real-world physical processes are often driven by
unknown external sources. In such cases, developing a purely analytical model
becomes very difficult and data-driven modeling can be of assistance. In this
paper, we present a hybrid framework combining physics-based numerical models
with deep learning for source identification and forecasting of spatio-temporal
dynamical systems with unobservable time-varying external sources. We formulate
our model PhICNet as a convolutional recurrent neural network (RNN) which is
end-to-end trainable for spatio-temporal evolution prediction of dynamical
systems and learns the source behavior as an internal state of the RNN.
Experimental results show that the proposed model can forecast the dynamics for
a relatively long time and identify the sources as well.
- Abstract(参考訳): 物理過程の時空間力学は一般に偏微分方程式(PDE)を用いてモデル化される。
核動力学はいくつかの物理学の原理に従うが、現実世界の物理過程はしばしば未知の外部の源によって駆動される。
このような場合、純粋な分析モデルの開発は非常に困難になり、データ駆動モデリングは助けになる可能性がある。
本稿では,物理ベースの数値モデルと深層学習を組み合わせることで,時空間力学系と観測不能な時間変化源の同定と予測を行う手法を提案する。
我々は、動的システムの時空間進化予測のためのエンドツーエンドトレーニングが可能な畳み込みリカレントニューラルネットワーク(RNN)として、我々のモデルPhICNetを定式化し、RNNの内部状態としてソース挙動を学習する。
実験の結果, 提案モデルは比較的長い時間ダイナミクスを予測でき, 音源の同定も可能であることがわかった。
関連論文リスト
- Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
ディープニューラルネットワークやリカレントニューラルネットワーク(RNN)などのデータ駆動機械学習モデルが,現実的な代替手段になりつつある。
本研究では,計測可能な材料に基づく経路依存材料に対する,機械学習型ロバスト性駆動型モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-01T23:25:08Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。