論文の概要: Inexact iterative numerical linear algebra for neural network-based
spectral estimation and rare-event prediction
- arxiv url: http://arxiv.org/abs/2303.12534v1
- Date: Wed, 22 Mar 2023 13:07:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 14:05:01.322806
- Title: Inexact iterative numerical linear algebra for neural network-based
spectral estimation and rare-event prediction
- Title(参考訳): ニューラルネットワークに基づくスペクトル推定と希少事象予測のための不正確な反復数値線形代数
- Authors: John Strahan, Spencer C. Guo, Chatipat Lorpaiboon, Aaron R. Dinner,
Jonathan Weare
- Abstract要約: 遷移作用素の固有関数を導くことは視覚化に有用である。
我々はこれらの固有関数を計算するための不正確な反復線形代数法を開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding dynamics in complex systems is challenging because there are
many degrees of freedom, and those that are most important for describing
events of interest are often not obvious. The leading eigenfunctions of the
transition operator are useful for visualization, and they can provide an
efficient basis for computing statistics such as the likelihood and average
time of events (predictions). Here we develop inexact iterative linear algebra
methods for computing these eigenfunctions (spectral estimation) and making
predictions from a data set of short trajectories sampled at finite intervals.
We demonstrate the methods on a low-dimensional model that facilitates
visualization and a high-dimensional model of a biomolecular system.
Implications for the prediction problem in reinforcement learning are
discussed.
- Abstract(参考訳): 複雑なシステムの力学を理解することは、多くの自由度があり、興味のある事象を記述する上で最も重要なものはしばしば明らかではない。
遷移作用素の先頭の固有関数は視覚化に有用であり、イベントの確率や平均時間(予測)といった統計計算の効率的な基盤を提供することができる。
ここでは、これらの固有関数(スペクトル推定)を計算し、有限間隔でサンプリングされた短い軌跡のデータセットから予測する不正確な反復線型代数法を開発する。
生体分子系の可視化と高次元モデルを容易にする低次元モデル上での手法を実証する。
強化学習における予測問題の意味について論じる。
関連論文リスト
- Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Efficient learning of nonlinear prediction models with time-series
privileged information [11.679648862014655]
線形ガウス力学系において、中間時系列データにアクセス可能なLuPI学習者は、偏りのない古典的学習者よりも決して悪くはないことを示す。
このマップが未知の場合のランダムな特徴と表現学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-15T05:56:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Data Assimilation in Operator Algebras [0.5249805590164901]
本研究では、部分的に観察された動的システムの逐次データ同化のためのフレームワークを開発する。
この定式化を有限次元行列代数に投影すると、新しい計算データ同化スキームが得られる。
これらの手法は量子コンピュータの実装の自然な候補である。
論文 参考訳(メタデータ) (2022-06-27T22:56:17Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
時系列モデルの構築とトレーニングのための新しいアプローチを提案する。
提案手法は,非定常時系列の予測モデル構築に適している。
論文 参考訳(メタデータ) (2020-11-23T21:28:03Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。