Stochastic Model Predictive Control Utilizing Bayesian Neural Networks
- URL: http://arxiv.org/abs/2303.14519v1
- Date: Sat, 25 Mar 2023 16:58:11 GMT
- Title: Stochastic Model Predictive Control Utilizing Bayesian Neural Networks
- Authors: J. Pohlodek, H. Alsmeier, B. Morabito, C. Schlauch, A. Savchenko, and
R. Findeisen
- Abstract summary: Integrating measurements and historical data can enhance control systems through learning-based techniques, but ensuring performance and safety is challenging.
We explore Bayesian neural networks for learning-assisted control, comparing their performance to Gaussian processes on a wastewater treatment plant model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating measurements and historical data can enhance control systems
through learning-based techniques, but ensuring performance and safety is
challenging. Robust model predictive control strategies, like stochastic model
predictive control, can address this by accounting for uncertainty. Gaussian
processes are often used but have limitations with larger models and data sets.
We explore Bayesian neural networks for stochastic learning-assisted control,
comparing their performance to Gaussian processes on a wastewater treatment
plant model. Results show Bayesian neural networks achieve similar performance,
highlighting their potential as an alternative for control designs,
particularly when handling extensive data sets.
Related papers
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Practical Probabilistic Model-based Deep Reinforcement Learning by
Integrating Dropout Uncertainty and Trajectory Sampling [7.179313063022576]
This paper addresses the prediction stability, prediction accuracy and control capability of the current probabilistic model-based reinforcement learning (MBRL) built on neural networks.
A novel approach dropout-based probabilistic ensembles with trajectory sampling (DPETS) is proposed.
arXiv Detail & Related papers (2023-09-20T06:39:19Z) - Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with
Gaussian Processes [39.411957858548355]
We show how to achieve smoother model predictive factor control using online sequential inference.
We evaluate this approach on several robot control tasks, matching to sample prior methods while also ensuring smoothness.
arXiv Detail & Related papers (2022-10-07T12:56:31Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Adaptive Model Predictive Control by Learning Classifiers [26.052368583196426]
We propose an adaptive MPC variant that automatically estimates control and model parameters.
We leverage recent results showing that BO can be formulated as a density ratio estimation.
This is then integrated into a model predictive path integral control framework yielding robust controllers for a variety of challenging robotics tasks.
arXiv Detail & Related papers (2022-03-13T23:22:12Z) - Stochastic Deep Model Reference Adaptive Control [9.594432031144715]
We present a Deep Neural Network-based Model Reference Adaptive Control.
Deep Model Reference Adaptive Control uses a Lyapunov-based method to adapt the output-layer weights of the DNN model in real-time.
A data-driven supervised learning algorithm is used to update the inner-layers parameters.
arXiv Detail & Related papers (2021-08-04T14:05:09Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
We use a dynamics model to determine the output properties that must hold for a neural network controller to operate safely.
We develop an adaptive verification approach to efficiently generate an overapproximation of the neural network policy.
We show that our method is able to generate meaningful probabilistic safety guarantees for aircraft collision avoidance neural networks.
arXiv Detail & Related papers (2021-03-01T18:48:21Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.