論文の概要: mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds
- arxiv url: http://arxiv.org/abs/2303.14986v1
- Date: Mon, 27 Mar 2023 08:30:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 16:28:17.911001
- Title: mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds
- Title(参考訳): mSPD-NN:関数コネクトロミクス多様体からのバイオマーカー発見のための幾何学的認識型ニューラルネットワークフレームワーク
- Authors: Niharika S. D'Souza and Archana Venkataraman
- Abstract要約: 本稿では,コネクトーム,すなわちmSPD-NNのための幾何学的認識型ニューラルネットワークフレームワークを提案する。
我々は,SPD平均推定のための一般的な選択肢に対するmSPD-NNの有効性を実証した。
ADHD-ASD併用性および健常者におけるネットワークの微妙な差異に関連する安定なバイオマーカーを明らかにする。
- 参考スコア(独自算出の注目度): 8.37609145576126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connectomics has emerged as a powerful tool in neuroimaging and has spurred
recent advancements in statistical and machine learning methods for
connectivity data. Despite connectomes inhabiting a matrix manifold, most
analytical frameworks ignore the underlying data geometry. This is largely
because simple operations, such as mean estimation, do not have easily
computable closed-form solutions. We propose a geometrically aware neural
framework for connectomes, i.e., the mSPD-NN, designed to estimate the geodesic
mean of a collections of symmetric positive definite (SPD) matrices. The
mSPD-NN is comprised of bilinear fully connected layers with tied weights and
utilizes a novel loss function to optimize the matrix-normal equation arising
from Fr\'echet mean estimation. Via experiments on synthetic data, we
demonstrate the efficacy of our mSPD-NN against common alternatives for SPD
mean estimation, providing competitive performance in terms of scalability and
robustness to noise. We illustrate the real-world flexibility of the mSPD-NN in
multiple experiments on rs-fMRI data and demonstrate that it uncovers stable
biomarkers associated with subtle network differences among patients with
ADHD-ASD comorbidities and healthy controls.
- Abstract(参考訳): コネクトミクスは、ニューロイメージングの強力なツールとして登場し、コネクティビティデータの統計的および機械学習手法の最近の進歩を促している。
コネクトームは行列多様体に属すが、ほとんどの分析フレームワークは基礎となるデータ幾何を無視している。
これは、平均推定のような単純な演算が容易に計算可能な閉形式解を持たないためである。
対称正定値行列(SPD)の集合の測地平均を推定するために,コネクトームのための幾何学的認識型ニューラルネットワーク,すなわちmSPD-NNを提案する。
mspd-nnは結合重みを持つ双線型完全連結層で構成され、fr\'echet平均推定から生じる行列正規式を最適化するために新しい損失関数を利用する。
合成データを用いた実験により、SPD平均推定の一般的な代替手段に対するmSPD-NNの有効性を実証し、拡張性とノイズに対する堅牢性の観点から競合性能を提供する。
RS-fMRIデータにおけるmSPD-NNの現実的柔軟性について述べるとともに,ADHD-ASD併用群と健康管理群の微妙なネットワーク差に伴う安定したバイオマーカーを明らかにする。
関連論文リスト
- Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
総合的な脳コネクトームの構築は、静止状態fMRI(rs-fMRI)解析において基本的な重要性が証明されている。
我々は脳ネットワークを有向非循環グラフ(DAG)としてモデル化し、脳領域間の直接因果関係を発見する。
本研究では,効率的な接続性を推定し,rs-fMRI時系列を分類するために,時空間DAG畳み込みネットワーク(ST-DAGCN)を提案する。
論文 参考訳(メタデータ) (2023-12-16T04:31:51Z) - Adaptive Log-Euclidean Metrics for SPD Matrix Learning [73.12655932115881]
広く使われているログユークリッド計量(LEM)を拡張した適応ログユークリッド計量(ALEM)を提案する。
実験および理論的結果から,SPDニューラルネットワークの性能向上における提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-26T18:31:52Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
慢性的な痛みを持つ人は、特定の身体の動きを無意識に適応させ、怪我や追加の痛みから身を守る。
この相関関係を分析するための専用のベンチマークデータベースが存在しないため、日々の行動に影響を及ぼす可能性のある特定の状況の1つを検討した。
我々は、複数のオートエンコーダを組み込んだゲートリカレントユニット(GRU)と疎結合なリカレントニューラルネットワーク(s-RNN)のアンサンブルを提案した。
本手法は,痛みレベルと痛み関連行動の両方の分類において,最先端のアプローチよりも優れていることを示すいくつかの実験を行った。
論文 参考訳(メタデータ) (2022-12-20T12:56:28Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - DEMAND: Deep Matrix Approximately NonlinearDecomposition to Identify
Meta, Canonical, and Sub-Spatial Pattern of functional Magnetic Resonance
Imaging in the Human Brain [8.93274096260726]
本研究では,SDL(Sparse Dictionary Learning)やDNN(Deep Neural Networks)といった浅い線形モデルを活用するために,Deep A roughly Decomposition(DEMAND)という新しい非線形行列分解法を提案する。
DEMANDは、人間の脳の再現可能な代謝、正準的、および部分空間的特徴を、他の仲間の方法論よりも効率的に明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-20T15:55:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Deep Optimal Transport for Domain Adaptation on SPD Manifolds [9.552869120136005]
ニューロイメージングデータは、対称性と正の定性という数学的性質を持っている。
従来の領域適応法の適用は、これらの数学的性質が破壊される可能性があるため、困難である。
本稿では,境界分布と条件分布の差分を管理するための幾何学的深層学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-15T03:13:02Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
静止機能MRI(r-fMRI)接続と拡散テンソルイメージング(DTI)トラクトグラフィーから補完情報を共同でモデル化する新しい統合フレームワークを提案する。
本フレームワークは,コネクトロミクスデータの生成モデルと,行動スコアを予測するディープネットワークを結合する。
我々のハイブリッドモデルは、臨床結果予測における最先端のアプローチよりも優れており、脳組織の解釈可能なマルチモーダルニューラルシグネチャを学習する。
論文 参考訳(メタデータ) (2020-08-27T23:43:56Z) - LOCUS: A Novel Decomposition Method for Brain Network Connectivity
Matrices using Low-rank Structure with Uniform Sparsity [8.105772140598056]
ネットワーク指向の研究は多くの科学分野で人気が高まっている。
神経科学研究において、画像に基づくネットワーク接続対策が脳組織の鍵となっている。
論文 参考訳(メタデータ) (2020-08-19T05:47:12Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。