Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC
- URL: http://arxiv.org/abs/2303.15053v1
- Date: Mon, 27 Mar 2023 09:55:33 GMT
- Title: Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC
- Authors: Eric Wulff, Maria Girone, David Southwick, Juan Pablo Garc\'ia
Amboage, Eduard Cuba
- Abstract summary: This work studies the potential of using model performance prediction to aid the HPO process carried out on High Performance Computing systems.
A quantum annealer is used to train the performance predictor and a method is proposed to overcome some of the problems derived from the current limitations in quantum systems.
Results are presented from the development of a containerized benchmark based on an AI-model for collision event reconstruction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training and Hyperparameter Optimization (HPO) of deep learning-based AI
models are often compute resource intensive and calls for the use of
large-scale distributed resources as well as scalable and resource efficient
hyperparameter search algorithms. This work studies the potential of using
model performance prediction to aid the HPO process carried out on High
Performance Computing systems. In addition, a quantum annealer is used to train
the performance predictor and a method is proposed to overcome some of the
problems derived from the current limitations in quantum systems as well as to
increase the stability of solutions. This allows for achieving results on a
quantum machine comparable to those obtained on a classical machine, showing
how quantum computers could be integrated within classical machine learning
tuning pipelines.
Furthermore, results are presented from the development of a containerized
benchmark based on an AI-model for collision event reconstruction that allows
us to compare and assess the suitability of different hardware accelerators for
training deep neural networks.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Model Performance Prediction for Hyperparameter Optimization of Deep
Learning Models Using High Performance Computing and Quantum Annealing [0.0]
We show that integrating model performance prediction with early stopping methods holds great potential to speed up the HPO process of deep learning models.
We propose a novel algorithm called Swift-Hyperband that can use either classical or quantum support vector regression for performance prediction.
arXiv Detail & Related papers (2023-11-29T10:32:40Z) - Quantum Data Encoding: A Comparative Analysis of Classical-to-Quantum
Mapping Techniques and Their Impact on Machine Learning Accuracy [0.0]
This research explores the integration of quantum data embedding techniques into classical machine learning (ML) algorithms.
Our findings reveal that quantum data embedding contributes to improved classification accuracy and F1 scores.
arXiv Detail & Related papers (2023-11-17T08:00:08Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Optimization Applications as Quantum Performance Benchmarks [0.0]
Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the coming years.
Inspired by existing methods to characterize classical optimization algorithms, we analyze the solution quality obtained by solving Max-Cut problems.
This is used to guide the development of an advanced benchmarking framework for quantum computers.
arXiv Detail & Related papers (2023-02-05T01:56:06Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Hyperparameter optimization of data-driven AI models on HPC systems [0.0]
This work is part of RAISE's work on data-driven use cases which leverages AI- and HPC cross-methods.
It is shown that in the case of Machine-Learned Particle reconstruction in High Energy Physics, the ASHA algorithm in combination with Bayesian optimization gives the largest performance increase per compute resources spent out of the investigated algorithms.
arXiv Detail & Related papers (2022-03-02T14:02:59Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.