Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC
- URL: http://arxiv.org/abs/2303.15053v1
- Date: Mon, 27 Mar 2023 09:55:33 GMT
- Title: Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC
- Authors: Eric Wulff, Maria Girone, David Southwick, Juan Pablo Garc\'ia
Amboage, Eduard Cuba
- Abstract summary: This work studies the potential of using model performance prediction to aid the HPO process carried out on High Performance Computing systems.
A quantum annealer is used to train the performance predictor and a method is proposed to overcome some of the problems derived from the current limitations in quantum systems.
Results are presented from the development of a containerized benchmark based on an AI-model for collision event reconstruction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training and Hyperparameter Optimization (HPO) of deep learning-based AI
models are often compute resource intensive and calls for the use of
large-scale distributed resources as well as scalable and resource efficient
hyperparameter search algorithms. This work studies the potential of using
model performance prediction to aid the HPO process carried out on High
Performance Computing systems. In addition, a quantum annealer is used to train
the performance predictor and a method is proposed to overcome some of the
problems derived from the current limitations in quantum systems as well as to
increase the stability of solutions. This allows for achieving results on a
quantum machine comparable to those obtained on a classical machine, showing
how quantum computers could be integrated within classical machine learning
tuning pipelines.
Furthermore, results are presented from the development of a containerized
benchmark based on an AI-model for collision event reconstruction that allows
us to compare and assess the suitability of different hardware accelerators for
training deep neural networks.
Related papers
- HyperQ-Opt: Q-learning for Hyperparameter Optimization [0.0]
This paper presents a novel perspective on HPO by formulating it as a sequential decision-making problem and leveraging Q-learning, a reinforcement learning technique.
The approaches are evaluated for their ability to find optimal or near-optimal configurations within a limited number of trials.
By shifting the paradigm toward policy-based optimization, this work contributes to advancing HPO methods for scalable and efficient machine learning applications.
arXiv Detail & Related papers (2024-12-23T18:22:34Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning [5.673361333697935]
Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL)
We introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL)
arXiv Detail & Related papers (2024-12-12T00:51:41Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Model Performance Prediction for Hyperparameter Optimization of Deep
Learning Models Using High Performance Computing and Quantum Annealing [0.0]
We show that integrating model performance prediction with early stopping methods holds great potential to speed up the HPO process of deep learning models.
We propose a novel algorithm called Swift-Hyperband that can use either classical or quantum support vector regression for performance prediction.
arXiv Detail & Related papers (2023-11-29T10:32:40Z) - Quantum Data Encoding: A Comparative Analysis of Classical-to-Quantum
Mapping Techniques and Their Impact on Machine Learning Accuracy [0.0]
This research explores the integration of quantum data embedding techniques into classical machine learning (ML) algorithms.
Our findings reveal that quantum data embedding contributes to improved classification accuracy and F1 scores.
arXiv Detail & Related papers (2023-11-17T08:00:08Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Hyperparameter optimization of data-driven AI models on HPC systems [0.0]
This work is part of RAISE's work on data-driven use cases which leverages AI- and HPC cross-methods.
It is shown that in the case of Machine-Learned Particle reconstruction in High Energy Physics, the ASHA algorithm in combination with Bayesian optimization gives the largest performance increase per compute resources spent out of the investigated algorithms.
arXiv Detail & Related papers (2022-03-02T14:02:59Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.