論文の概要: Sparse Gaussian Processes with Spherical Harmonic Features Revisited
- arxiv url: http://arxiv.org/abs/2303.15948v1
- Date: Tue, 28 Mar 2023 13:02:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 15:06:35.609356
- Title: Sparse Gaussian Processes with Spherical Harmonic Features Revisited
- Title(参考訳): 球面高調波を再訪したスパースガウス過程
- Authors: Stefanos Eleftheriadis, Dominic Richards, James Hensman
- Abstract要約: 球面調和特性を持つガウス過程モデルを再検討し、関連するRKHS、固有構造および深部モデル間の接続について検討する。
連続深さの深いモデルに対応する新しいカーネルのクラスを導入する。
機械学習ベンチマークデータセットに対する我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 19.104057413538612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit the Gaussian process model with spherical harmonic features and
study connections between the associated RKHS, its eigenstructure and deep
models. Based on this, we introduce a new class of kernels which correspond to
deep models of continuous depth. In our formulation, depth can be estimated as
a kernel hyper-parameter by optimizing the evidence lower bound. Further, we
introduce sparseness in the eigenbasis by variational learning of the spherical
harmonic phases. This enables scaling to larger input dimensions than
previously, while also allowing for learning of high frequency variations. We
validate our approach on machine learning benchmark datasets.
- Abstract(参考訳): 球面調和特性を持つガウス過程モデルを再検討し、関連するRKHS、固有構造および深部モデル間の接続を研究する。
これに基づいて、連続深さの深いモデルに対応する新しいカーネルのクラスを導入する。
我々の定式化では、証拠を下限に最適化することで、深さをカーネルハイパーパラメータとして推定することができる。
さらに,球面調和位相の変動学習により固有基底のスパース性を導入する。
これにより、従来よりも大きな入力次元へのスケーリングが可能になると同時に、高周波変動の学習も可能になる。
機械学習ベンチマークデータセットに対するアプローチを検証する。
関連論文リスト
- Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
本稿では、カーネルハイパーパラメータを確率変数として扱い、結合微分方程式(SDE)を構築して、その後部分布と誘導点を学習する完全ベイズ的手法を提案する。
提案手法は,SDE法による結合変数による時間変化,包括的,現実的な後部近似を提供する。
我々の研究はベイズ的推論を推し進めるためのエキサイティングな研究の道を開き、継続的なガウス的プロセスのための強力なモデリングツールを提供する。
論文 参考訳(メタデータ) (2024-08-12T11:41:07Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
本稿では,限られたデータを扱う音声変換手法を提案する。
変分深層学習(SVDKL)に基づく。
非滑らかでより複雑な関数を推定することができる。
論文 参考訳(メタデータ) (2023-09-08T16:32:47Z) - Sample-efficient Model-based Reinforcement Learning for Quantum Control [0.2999888908665658]
ノイズの多い時間依存ゲート最適化のためのモデルベース強化学習(RL)手法を提案する。
標準モデルフリーRLに比べて,本手法のサンプル複雑性において,桁違いの優位性を示す。
提案アルゴリズムは,部分的特徴付き1量子ビット系と2量子ビット系の制御に適している。
論文 参考訳(メタデータ) (2023-04-19T15:05:19Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
本稿では,一般的なガウスカーネルと,ランダムな特徴近似を用いてカーネルベースモデルを線形化する手法に着目する。
このような手法は、高周波データをモデル化する際、悪い結果をもたらすことを示すとともに、カーネル近似と下流性能を大幅に改善する新たなローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-04-12T09:52:36Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
高精度な単分子深度推定には長距離相関が不可欠である。
我々は,このグローバルコンテキストを効果的な注意機構でモデル化するためにTransformerを活用することを提案する。
提案したモデルであるDepthFormerは、最先端のモノクル深度推定手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-27T05:03:56Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks [61.07202852469595]
本稿では,無限幅浅部ReLUネットワークから生じるランダムな特徴カーネルをベースとした3次元表面再構成手法であるNeural Splinesを提案する。
提案手法は,最近のニューラルネットワーク技術より優れ,ポアソン表面再構成に広く用いられている。
論文 参考訳(メタデータ) (2020-06-24T14:54:59Z) - Deep Latent-Variable Kernel Learning [25.356503463916816]
本稿では,潜在変数が正規化表現の符号化を行う完全潜時可変カーネル学習(DLVKL)モデルを提案する。
実験により、DLVKL-NSDEは、小さなデータセット上でよく校正されたGPと同様に動作し、大きなデータセット上で既存のディープGPより優れていることが示された。
論文 参考訳(メタデータ) (2020-05-18T05:55:08Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。