論文の概要: Probabilistic inverse optimal control with local linearization for
non-linear partially observable systems
- arxiv url: http://arxiv.org/abs/2303.16698v1
- Date: Wed, 29 Mar 2023 13:51:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 14:41:32.491977
- Title: Probabilistic inverse optimal control with local linearization for
non-linear partially observable systems
- Title(参考訳): 非線型部分可観測系に対する局所線形化による確率的逆最適制御
- Authors: Dominik Straub, Matthias Schultheis, Heinz Koeppl, Constantin A.
Rothkopf
- Abstract要約: 逆最適制御法は、シーケンシャルな意思決定タスクの振る舞いを特徴付けるのに使うことができる。
本稿では,制御信号の欠如と部分可観測性を有する非線形系の逆最適制御に対する確率論的アプローチを提案する。
- 参考スコア(独自算出の注目度): 24.995196229697857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse optimal control methods can be used to characterize behavior in
sequential decision-making tasks. Most existing work, however, requires the
control signals to be known, or is limited to fully-observable or linear
systems. This paper introduces a probabilistic approach to inverse optimal
control for stochastic non-linear systems with missing control signals and
partial observability that unifies existing approaches. By using an explicit
model of the noise characteristics of the sensory and control systems of the
agent in conjunction with local linearization techniques, we derive an
approximate likelihood for the model parameters, which can be computed within a
single forward pass. We evaluate our proposed method on stochastic and
partially observable version of classic control tasks, a navigation task, and a
manual reaching task. The proposed method has broad applicability, ranging from
imitation learning to sensorimotor neuroscience.
- Abstract(参考訳): 逆最適制御法は、シーケンシャルな意思決定タスクの振る舞いを特徴づけるために用いられる。
しかし、既存の作業の多くは制御信号を知っておくか、完全に観測可能なシステムや線形システムに限られている。
本稿では,制御信号の欠如と既存手法を統一する部分可観測性を有する確率的非線形系の逆最適制御に対する確率論的アプローチを提案する。
エージェントの知覚・制御系のノイズ特性の明示的なモデルと局所線形化手法を併用することにより,モデルパラメータの近似的近似を導出し,単一のフォワードパス内で計算できる。
本稿では,従来の制御タスク,ナビゲーションタスク,手動到達タスクの確率的かつ部分的に観測可能なバージョンについて評価する。
提案手法は、模倣学習から感覚運動神経科学まで幅広い応用性を有する。
関連論文リスト
- Inverse decision-making using neural amortized Bayesian actors [19.128377007314317]
我々は、教師なしの方法で幅広いパラメータ設定で訓練されたニューラルネットワークを用いてベイズアクターを記憶する。
本稿では,本手法がモデル比較の原理と,先行とコストの識別不能につながる要因を解消するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2024-09-04T10:31:35Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Representation Surgery: Theory and Practice of Affine Steering [72.61363182652853]
言語モデルは、しばしば好ましくない振る舞いを示す。
モデルが望ましくない振る舞いを示すのを防ぐための自然な(そして一般的な)アプローチの1つは、モデルの表現を操ることである。
本稿では, ステアリング機能の形式的および経験的特性について検討する。
論文 参考訳(メタデータ) (2024-02-15T00:20:30Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
所望の予測関数に関する情報をニューラルネットワークトレーニングに明示的にエンコードできる、モチベーションの高い正規化手法を導出できることが示される。
本手法の有効性を実証的に評価し,提案手法がほぼ完全なセマンティックシフト検出と高度に校正された予測不確実性推定に繋がることを示す。
論文 参考訳(メタデータ) (2023-12-28T17:50:56Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Non-Gaussian Uncertainty Minimization Based Control of Stochastic
Nonlinear Robotic Systems [9.088960941718]
我々は、不確実性や乱れによる名目状態軌跡からのシステムの状態のずれを最小限に抑える状態フィードバックコントローラを設計する。
我々はモーメントと特徴関数を用いて、ロボットシステムの非線形運動モデル全体にわたって不確実性を伝播する。
論文 参考訳(メタデータ) (2023-03-02T23:31:32Z) - Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach [5.05828899601167]
暗黙的な二重制御パラダイムに基づくループ内動作計画のための不確実性学習を実現するアルゴリズムを提案する。
提案手法は,動的プログラミングモデル予測制御問題のサンプリングに基づく近似に依拠する。
結果として得られたポリシーは、連続的およびカテゴリー的不確実性を持つ一般的な人間の予測モデルに対する二重制御効果を維持することが示されている。
論文 参考訳(メタデータ) (2022-02-15T20:40:06Z) - Inverse Optimal Control Adapted to the Noise Characteristics of the
Human Sensorimotor System [5.629161809575013]
観測行動からコスト関数を推定できる信号依存雑音を用いた逆最適制御を導入する。
我々は、状態と信念状態の進化の確率論的定式化を導出する。
実験者の視点から、状態変数の部分観測可能性にモデルを拡張する。
論文 参考訳(メタデータ) (2021-10-21T13:30:14Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Combining Gaussian processes and polynomial chaos expansions for
stochastic nonlinear model predictive control [0.0]
最適制御問題の時間不変不確かさを明示的に考慮する新しいアルゴリズムを提案する。
本稿では, 非線形変換の平均および分散推定値を得るために, この組み合わせを効率的に利用することを提案する。
最適制御問題に対する確率的目標と確率的制約の両方を定式化する方法を示す。
論文 参考訳(メタデータ) (2021-03-09T14:25:08Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。