Data-driven multiscale modeling for correcting dynamical systems
- URL: http://arxiv.org/abs/2303.17496v2
- Date: Wed, 14 May 2025 14:04:18 GMT
- Title: Data-driven multiscale modeling for correcting dynamical systems
- Authors: Karl Otness, Laure Zanna, Joan Bruna,
- Abstract summary: We propose a multiscale approach for predicting quantities in dynamical systems which is explicitly structured to extract information in both fine-to-coarse and coarse-to-fine directions.<n>We evaluate our approach on a climate subgrid parameterization task in which our multiscale networks correct chaotic underlying models to reflect the contributions of unresolved, fine-scale dynamics.
- Score: 32.986783465299084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a multiscale approach for predicting quantities in dynamical systems which is explicitly structured to extract information in both fine-to-coarse and coarse-to-fine directions. We envision this method being generally applicable to problems with significant self-similarity or in which the prediction task is challenging and where stability of a learned model's impact on the target dynamical system is important. We evaluate our approach on a climate subgrid parameterization task in which our multiscale networks correct chaotic underlying models to reflect the contributions of unresolved, fine-scale dynamics.
Related papers
- Learning Stochastic Multiscale Models [1.8416014644193066]
We propose an approach to learn multiscale models in the form of differential equations directly from observational data.<n>We learn the parameters of the multiscale model using a modern forward-solver-free amortized variational inference method.<n>Our approach draws inspiration from physics-based multiscale modeling approaches, such as large-eddy simulation in fluid dynamics.
arXiv Detail & Related papers (2025-06-27T21:57:06Z) - Paraformer: Parameterization of Sub-grid Scale Processes Using Transformers [6.622831012413507]
We propose a "memory-aware" Transformer-based model on ClimSim, the largest dataset ever created for climate parameterization.
Our results demonstrate that the proposed model successfully captures the complex non-linear dependencies in the sub-grid scale variables.
arXiv Detail & Related papers (2024-12-21T20:21:52Z) - Predicting Wall Thickness Changes in Cold Forging Processes: An Integrated FEM and Neural Network approach [2.7763199324745966]
We first provide a thorough analysis of nosing processes and the influencing parameters.
We then set-up a Finite Element Method simulation to better analyse the effects of varying process parameters.
We present a novel modeling framework based on specifically designed graph neural networks as surrogate models.
arXiv Detail & Related papers (2024-11-20T14:42:53Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
parameterizations are a major source of systematic errors and large uncertainties in climate projections.
Deep learning (DL)-based parameterizations, trained on data from computationally expensive short, high-resolution simulations, have shown great promise for improving climate models.
We propose an efficient supervised learning framework for DL-based parameterizations that leads to physically consistent models.
arXiv Detail & Related papers (2024-06-06T10:02:49Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes and neural networks to model surface wind gusts at sub-kilometer resolution.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
We introduce a multiscale neural network framework that incorporates self-similarity as prior knowledge.
For deterministic dynamics, our framework can discern whether the dynamics are self-similar.
Our method can identify the power law exponents in self-similar systems.
arXiv Detail & Related papers (2023-10-12T12:39:08Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems.
We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectories that are both low-dimensional and smooth.
arXiv Detail & Related papers (2023-01-25T03:06:03Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Combining data assimilation and machine learning to estimate parameters
of a convective-scale model [0.0]
Errors in the representation of clouds in convection-permitting numerical weather prediction models can be introduced by different sources.
In this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural networks.
arXiv Detail & Related papers (2021-09-07T09:17:29Z) - A purely data-driven framework for prediction, optimization, and control
of networked processes: application to networked SIS epidemic model [0.8287206589886881]
We develop a data-driven framework based on operator-theoretic techniques to identify and control nonlinear dynamics over large-scale networks.
The proposed approach requires no prior knowledge of the network structure and identifies the underlying dynamics solely using a collection of two-step snapshots of the states.
arXiv Detail & Related papers (2021-08-01T03:57:10Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Tensorized Transformer for Dynamical Systems Modeling [0.0]
We establish a parallel between the dynamical systems modeling and language modeling tasks.
We propose a transformer-based model that incorporates geometrical properties of the data.
We provide an iterative training algorithm allowing the fine-grid approximation of the conditional probabilities of high-dimensional dynamical systems.
arXiv Detail & Related papers (2020-06-05T13:43:37Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z) - A latent variable approach to heat load prediction in thermal grids [10.973034520723957]
The method is applied to a single multi-dwelling building in Lulea, Sweden.
Results are compared with predictions using an artificial neural network.
arXiv Detail & Related papers (2020-02-13T09:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.