論文の概要: CrossGP: Cross-Day Glucose Prediction Excluding Physiological Information
- arxiv url: http://arxiv.org/abs/2404.10901v1
- Date: Tue, 16 Apr 2024 20:40:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 17:52:27.108110
- Title: CrossGP: Cross-Day Glucose Prediction Excluding Physiological Information
- Title(参考訳): CrossGP:生理情報を除く1日ごとのグルコース予測
- Authors: Ziyi Zhou, Ming Cheng, Yanjun Cui, Xingjian Diao, Zhaorui Ma,
- Abstract要約: 糖尿病患者の早期血糖予測は、タイムリーな治療に必要である。
そこで我々は,クロスデイグルコース予測のための新しい機械学習フレームワークであるCrossGPを提案する。
- 参考スコア(独自算出の注目度): 4.975538965305628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing number of diabetic patients is a serious issue in society today, which has significant negative impacts on people's health and the country's financial expenditures. Because diabetes may develop into potential serious complications, early glucose prediction for diabetic patients is necessary for timely medical treatment. Existing glucose prediction methods typically utilize patients' private data (e.g. age, gender, ethnicity) and physiological parameters (e.g. blood pressure, heart rate) as reference features for glucose prediction, which inevitably leads to privacy protection concerns. Moreover, these models generally focus on either long-term (monthly-based) or short-term (minute-based) predictions. Long-term prediction methods are generally inaccurate because of the external uncertainties that can greatly affect the glucose values, while short-term ones fail to provide timely medical guidance. Based on the above issues, we propose CrossGP, a novel machine-learning framework for cross-day glucose prediction solely based on the patient's external activities without involving any physiological parameters. Meanwhile, we implement three baseline models for comparison. Extensive experiments on Anderson's dataset strongly demonstrate the superior performance of CrossGP and prove its potential for future real-life applications.
- Abstract(参考訳): 糖尿病患者の増加は、今日の社会で深刻な問題であり、人々の健康と国の財政支出に大きな影響を及ぼす。
糖尿病は、潜在的に深刻な合併症に発展する可能性があるため、糖尿病患者の早期血糖予測は、タイムリーな治療に必要である。
既存のグルコース予測法は、通常、患者のプライベートデータ(例えば年齢、性別、民族)と生理的パラメータ(例えば血圧、心拍数)をグルコース予測の基準特徴として利用しており、これは必然的にプライバシー保護の懸念につながる。
さらに、これらのモデルは一般的に、長期(月ベース)または短期(分ベース)の予測に焦点を当てる。
長期予測法は、グルコース値に大きな影響を及ぼす外部の不確実性のため、一般的に不正確であるが、短期予測法では、タイムリーな医療指導が得られない。
以上の課題に基づき, 生理的パラメータを含まない, 患者の外部活動にのみ依存した, 日内血糖予測のための新しい機械学習フレームワークであるCrossGPを提案する。
一方,比較のために3つのベースラインモデルを実装した。
Andersonのデータセットに関する大規模な実験は、CrossGPの優れた性能を強く証明し、将来の現実的な応用の可能性を証明するものである。
関連論文リスト
- FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions [4.073768455373616]
連続グルコースモニタリング(Continuous glucose monitoring, CGM)デバイスは、血糖値のリアルタイムモニタリングと、血糖値の変動に対するタイムリーな警告を提供する。
低血糖や高血糖のような希少な出来事は、その頻度が低いために依然として困難である。
本稿では,血糖除去領域の性能を著しく向上させる新しいHH損失関数を提案する。
論文 参考訳(メタデータ) (2024-08-25T19:51:27Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGluは、CGM時系列データに基づく短期的なグルコース予測のためのエンドツーエンドパイプラインである。
患者の個人データを追加することなく、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-18T06:02:12Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
本研究は,血糖値の今後の変動を予測することを目的としており,血糖値の低下が予想される可能性がある。
提案手法は, 有望な結果を得た4種類の糖尿病患者の実データを用いて検討した。
論文 参考訳(メタデータ) (2023-03-30T09:08:31Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
低次元の埋め込み空間は、健康指標、ライフスタイル、および人口動態の予測をデータスカース化するために、英国バイオバンクの人口データセットから導出することができる。
半超越的アプローチによるパフォーマンス向上は、おそらく様々な医学データサイエンス応用にとって重要な要素となるだろう。
論文 参考訳(メタデータ) (2021-10-12T16:25:50Z) - Deep Personalized Glucose Level Forecasting Using Attention-based
Recurrent Neural Networks [5.250950284616893]
本研究では,血糖予測の問題点について検討し,深いパーソナライズド・ソリューションを提供する。
データを解析し、重要なパターンを検出する。
実データセット上でモデルの有効性を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T01:36:53Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in
Type-1 Diabetes [4.17510581764131]
GLYFEは機械学習に基づくグルコース予測モデルのベンチマークである。
ブドウ糖沈降の文献から得られた9つの異なるモデルの結果を報告する。
論文 参考訳(メタデータ) (2020-06-29T11:34:41Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。