A GKP qubit protected by dissipation in a high-impedance superconducting circuit driven by a microwave frequency comb
- URL: http://arxiv.org/abs/2304.01425v2
- Date: Tue, 18 Jun 2024 20:43:25 GMT
- Title: A GKP qubit protected by dissipation in a high-impedance superconducting circuit driven by a microwave frequency comb
- Authors: Lev-Arcady Sellem, Alain Sarlette, Zaki Leghtas, Mazyar Mirrahimi, Pierre Rouchon, Philippe Campagne-Ibarcq,
- Abstract summary: We propose a novel approach to generate, protect and control GKP qubits.
It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high impedance circuit mode.
The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasi-particle poisoning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach to generate, protect and control GKP qubits. It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high impedance circuit mode, autonomously stabilizing the finite-energy GKP code. The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasi-particle poisoning. In particular, noise from ancillary modes leveraged for dissipation engineering does not propagate at the logical level. In a state-of-the-art experimental setup, we estimate that the encoded qubit lifetime could extend two orders of magnitude beyond the break-even point, with substantial margin for improvement through progress in fabrication and control electronics. Qubit initialization, readout and control via Clifford gates can be performed while maintaining the code stabilization, paving the way toward the assembly of GKP qubits in a fault-tolerant quantum computing architecture.
Related papers
- Self-correcting GKP qubit and gates in a driven-dissipative circuit [1.8960192929603623]
We propose a circuit architecture for a dissipatively error-corrected GKP qubit.
The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable switch.
We show that the qubit supports native self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to exponential suppression of gate infidelity.
arXiv Detail & Related papers (2024-05-09T10:51:48Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
Recently reported generation and error-correction of GKP qubits holds great promise for the future of quantum computing.
We develop efficient numerical methods to optimize our protocol parameters.
Our approach circumvents the main roadblock towards fault-tolerant quantum computation with GKP qubits.
arXiv Detail & Related papers (2023-02-23T15:21:50Z) - Superconductor modulation circuits for Qubit control at microwave
frequencies [0.0]
Single Flux Quantum (SFQ) and Adiabatic Quantum Flux Parametron (AQFP) superconductor logic families can reach ultimate performance at cryogenic temperatures.
We have created a superconductor-based on-chip function generator to control qubits.
arXiv Detail & Related papers (2022-11-12T13:54:30Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Entangling transmons with low-frequency protected superconducting qubits [0.0]
We propose and study a scheme for entangling a tunable transmon with a Cooper-pair parity-protected qubit.
We show that non-computational states can mediate a two-qubit entangling gate that preserves the Cooper-pair parity independent of the detailed pulse sequence.
Our results suggest that standard high-precision gate calibration protocols could be repurposed for operating hybrid qubit devices.
arXiv Detail & Related papers (2022-03-08T19:00:01Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
superconducting circuits offer opportunities to store and process quantum information with high fidelity.
Noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels.
This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
arXiv Detail & Related papers (2021-06-18T18:00:13Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.