Self-correcting GKP qubit and gates in a driven-dissipative circuit
- URL: http://arxiv.org/abs/2405.05671v1
- Date: Thu, 9 May 2024 10:51:48 GMT
- Title: Self-correcting GKP qubit and gates in a driven-dissipative circuit
- Authors: Frederik Nathan, Liam O'Brien, Kyungjoo Noh, Matthew H. Matheny, Arne L. Grimsmo, Liang Jiang, Gil Refael,
- Abstract summary: We propose a circuit architecture for a dissipatively error-corrected GKP qubit.
The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable switch.
We show that the qubit supports native self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to exponential suppression of gate infidelity.
- Score: 1.8960192929603623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a circuit architecture for a dissipatively error-corrected GKP qubit. The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable switch. When the switch is activated via a particular family of stepwise protocols, the resistor absorbs all noise-induced entropy, resulting in dissipative error correction of both phase and amplitude errors. This leads to an exponential increase of qubit lifetime, reaching beyond 10ms in simulations with near-feasible parameters. We show that the lifetime remains exponentially long in the presence of extrinsic noise and device/control imperfections (e.g., due to parasitics and finite control bandwidth) under specific thresholds. In this regime, lifetime is likely only limited by phase slips and quasiparticle tunneling. We show that the qubit can be read out and initialized via measurement of the supercurrent in the Josephson junction. We finally show that the qubit supports native self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to exponential suppression of gate infidelity.
Related papers
- Cross-resonance control of an oscillator with a fluxonium ancilla [0.46603287532620735]
A CD gate scheme with fluxonium as the ancilla has been experimentally demonstrated to have a large noise bias and millisecond-level lifetimes.
We numerically demonstrate CD gates with unitary fidelity exceeding 99.9% and gate times of hundreds of nanoseconds.
arXiv Detail & Related papers (2024-07-25T19:34:09Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Designing high-fidelity two-qubit gates between fluxonium qubits [0.19528996680336308]
We propose a two-qubit gate between fluxonium qubits for minimal error, speed, and control simplicity.
Our architecture consists of two fluxoniums coupled via a linear resonator.
We predict an open-system average CZ gate infidelity of $1.86 times 10-4$ in 70ns.
arXiv Detail & Related papers (2024-03-12T01:56:21Z) - Charge-parity switching effects and optimisation of transmon-qubit design parameters [0.0]
We identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling.
A charge-parity switch can be the dominant quasiparticle-related error source of a two-qubit gate.
We present a performance metric for quantum circuit execution.
arXiv Detail & Related papers (2023-09-29T12:05:27Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - A GKP qubit protected by dissipation in a high-impedance superconducting circuit driven by a microwave frequency comb [0.0]
We propose a novel approach to generate, protect and control GKP qubits.
It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high impedance circuit mode.
The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasi-particle poisoning.
arXiv Detail & Related papers (2023-04-04T00:20:02Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.