論文の概要: BugNIST -- a Large Volumetric Dataset for Object Detection under Domain Shift
- arxiv url: http://arxiv.org/abs/2304.01838v3
- Date: Sun, 7 Jul 2024 21:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:48:51.330463
- Title: BugNIST -- a Large Volumetric Dataset for Object Detection under Domain Shift
- Title(参考訳): BugNIST - ドメインシフトによるオブジェクト検出のための大規模ボリュームデータセット
- Authors: Patrick Møller Jensen, Vedrana Andersen Dahl, Carsten Gundlach, Rebecca Engberg, Hans Martin Kjer, Anders Bjorholm Dahl,
- Abstract要約: BugNISTデータセットは,12種類のバグタイプ9154マイクロCTボリュームと,密充填されたバグミックス388ボリュームからなる。
このデータセットは、ソースとターゲットドメインで同じ外観のオブジェクトによって特徴づけられる。
本研究では,3次元物体検出手法のフィールド化をめざして,ベースライン検出解析を行う。
- 参考スコア(独自算出の注目度): 5.818883841500506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain shift significantly influences the performance of deep learning algorithms, particularly for object detection within volumetric 3D images. Annotated training data is essential for deep learning-based object detection. However, annotating densely packed objects is time-consuming and costly. Instead, we suggest training models on individually scanned objects, causing a domain shift between training and detection data. To address this challenge, we introduce the BugNIST dataset, comprising 9154 micro-CT volumes of 12 bug types and 388 volumes of tightly packed bug mixtures. This dataset is characterized by having objects with the same appearance in the source and target domains, which is uncommon for other benchmark datasets for domain shift. During training, individual bug volumes labeled by class are utilized, while testing employs mixtures with center point annotations and bug type labels. Together with the dataset, we provide a baseline detection analysis, with the aim of advancing the field of 3D object detection methods.
- Abstract(参考訳): ドメインシフトはディープラーニングアルゴリズムの性能に大きく影響する。
アノテーション付きトレーニングデータは、ディープラーニングに基づくオブジェクト検出に不可欠である。
しかし、密集したオブジェクトに注釈を付けるのに時間がかかり、コストがかかる。
代わりに、個別にスキャンされたオブジェクトのトレーニングモデルを提案し、トレーニングデータと検出データのドメインシフトを引き起こします。
この課題に対処するために,12種類のバグタイプ9154マイクロCTボリュームと,密充填されたバグミックス388ボリュームからなるBugNISTデータセットを紹介した。
このデータセットは、ソースとターゲットドメインで同じ外観のオブジェクトを持つのが特徴で、ドメインシフトのための他のベンチマークデータセットでは珍しい。
トレーニングでは、クラスによってラベル付けされた個々のバグボリュームが使用され、テストではセンターポイントアノテーションとバグタイプラベルが混在している。
データセットとともに,3次元物体検出法の分野を前進させることを目的として,ベースライン検出解析を行う。
関連論文リスト
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection
Generalization [3.8243923744440926]
特定の点分布を持つソースデータセットでトレーニングされた3Dオブジェクト検出モデルは、目に見えないデータセットに一般化する上で困難であることが示されている。
我々は、アノテーション付きソースデータセットから利用可能な情報を、MDT3D(Multi-Dataset Training for 3D Object Detection)メソッドで活用する。
トレーニング中にデータセットの混合をどのように管理し、最後にクロスデータセット拡張メソッド、すなわちクロスデータセットオブジェクトインジェクションを導入するかを示します。
論文 参考訳(メタデータ) (2023-08-02T08:20:00Z) - Uncertainty Aware Active Learning for Reconfiguration of Pre-trained
Deep Object-Detection Networks for New Target Domains [0.0]
物体検出はコンピュータビジョンタスクの最も重要かつ基本的な側面の1つである。
オブジェクト検出モデルのトレーニングデータを効率的に取得するために、多くのデータセットは、ビデオフォーマットでアノテーションのないデータを取得することを選択します。
ビデオからすべてのフレームに注釈を付けるのは、多くのフレームがモデルが学ぶのに非常によく似た情報を含んでいるため、費用がかかり非効率である。
本稿では,この問題に対処するためのオブジェクト検出モデルのための新しい能動学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-22T17:14:10Z) - BigDetection: A Large-scale Benchmark for Improved Object Detector
Pre-training [44.32782190757813]
我々はBigDetectionと呼ばれる新しい大規模ベンチマークを構築した。
私たちのデータセットには600のオブジェクトカテゴリがあり、3.4M以上のトレーニングイメージと36Mのバウンディングボックスが含まれています。
論文 参考訳(メタデータ) (2022-03-24T17:57:29Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
本稿では,ST3D++という名前の自己学習手法を提案する。
擬似ラベル生成プロセスにハイブリット品質を意識した三重項メモリを組み込むことにより、生成された擬似ラベルの品質と安定性を向上させる。
モデルトレーニングの段階では、ソースデータ支援トレーニング戦略とカリキュラムデータ拡張ポリシーを提案する。
論文 参考訳(メタデータ) (2021-08-15T07:49:06Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。