論文の概要: On the universal approximation property of radial basis function neural
networks
- arxiv url: http://arxiv.org/abs/2304.02220v1
- Date: Wed, 5 Apr 2023 04:20:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 13:28:39.036665
- Title: On the universal approximation property of radial basis function neural
networks
- Title(参考訳): 放射状基底関数ニューラルネットワークの普遍近似特性について
- Authors: Aysu Ismayilova and Muhammad Ismayilov
- Abstract要約: RBF(Radial Basis Function)ニューラルネットワークの新しいクラスについて検討し、スムーズな要因をシフトに置き換える。
我々は、これらのネットワークが$d$次元ユークリッド空間の任意のコンパクト部分集合上で連続多変量関数を近似できるという条件下で証明する。
有限個の固定セントロイドを持つRBFネットワークに対して、任意の精度で近似を保証する条件を記述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we consider a new class of RBF (Radial Basis Function) neural
networks, in which smoothing factors are replaced with shifts. We prove under
certain conditions on the activation function that these networks are capable
of approximating any continuous multivariate function on any compact subset of
the $d$-dimensional Euclidean space. For RBF networks with finitely many fixed
centroids we describe conditions guaranteeing approximation with arbitrary
precision.
- Abstract(参考訳): 本稿では,スムージング因子をシフトに置き換えたRBF(Radial Basis Function)ニューラルネットワークの新たなクラスについて考察する。
活性化関数のある条件下では、これらのネットワークは、d$-次元ユークリッド空間の任意のコンパクト部分集合上の任意の連続多変数関数を近似することができる。
有限個の固定セントロイドを持つRBFネットワークに対して、任意の精度で近似を保証する条件を記述する。
関連論文リスト
- Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces [0.0]
本稿では,ReLUニューラルネットワークによる有界関数のクラスを最小限の正則性仮定で近似する。
近似誤差は対象関数の一様ノルムに比例した量で上から有界化可能であることを示す。
論文 参考訳(メタデータ) (2024-05-10T14:31:58Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - Piecewise Linear Functions Representable with Infinite Width Shallow
ReLU Neural Networks [0.0]
我々は,このような無限幅のニューラルネットワークで表現可能なすべての連続的片方向線形関数が,有限幅の浅いReLUニューラルネットワークとして表現可能であることを,オンジーらの予想を証明した。
論文 参考訳(メタデータ) (2023-07-25T15:38:18Z) - Approximation and interpolation of deep neural networks [0.0]
過度にパラメータ化された状態において、ディープニューラルネットワークは普遍的な近似を提供し、任意のデータセットを補間することができる。
最後の節では、活性化関数の一般的な条件下でそのような点を見つけるための実用的な確率的方法を提案する。
論文 参考訳(メタデータ) (2023-04-20T08:45:16Z) - Optimal Approximation Complexity of High-Dimensional Functions with
Neural Networks [3.222802562733787]
本稿では、ReLUと$x2$の両方を活性化関数として使用するニューラルネットワークの特性について検討する。
いくつかの文脈において、低局所次元を利用して次元の呪いを克服し、未知の低次元部分空間に最適な近似値を得る方法を示す。
論文 参考訳(メタデータ) (2023-01-30T17:29:19Z) - Benefits of Overparameterized Convolutional Residual Networks: Function
Approximation under Smoothness Constraint [48.25573695787407]
大規模なConvResNetは関数の値から目的関数を近似できるだけでなく、一階スムーズ性も十分に発揮できることを示す。
我々の理論は、実際にディープ・ワイド・ネットワークを使うことの利点を部分的に正当化している。
論文 参考訳(メタデータ) (2022-06-09T15:35:22Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Deep neural network approximation of analytic functions [91.3755431537592]
ニューラルネットワークの空間に エントロピーバウンド 片方向の線形活性化関数を持つ
我々は、ペナル化深部ニューラルネットワーク推定器の予測誤差に対するオラクルの不等式を導出する。
論文 参考訳(メタデータ) (2021-04-05T18:02:04Z) - Approximations with deep neural networks in Sobolev time-space [5.863264019032882]
進化方程式の解は一般に特定のボヒナー・ソボレフ空間にある。
ディープニューラルネットワークは、ボヒナー・ソボレフ空間に関してソボレフ正則関数を近似することができる。
論文 参考訳(メタデータ) (2020-12-23T22:21:05Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
平均勾配勾配勾配は極小収束率が得られることを示す。
本稿では、ReLUネットワークのNTKで指定されたターゲット関数を最適収束速度で学習できることを示す。
論文 参考訳(メタデータ) (2020-06-22T14:31:37Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。