論文の概要: High-order Spatial Interactions Enhanced Lightweight Model for Optical
Remote Sensing Image-based Small Ship Detection
- arxiv url: http://arxiv.org/abs/2304.03812v1
- Date: Fri, 7 Apr 2023 18:40:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 19:30:16.291973
- Title: High-order Spatial Interactions Enhanced Lightweight Model for Optical
Remote Sensing Image-based Small Ship Detection
- Title(参考訳): 光リモートセンシング画像を用いた小型船舶検出のための高次空間相互作用強化軽量モデル
- Authors: Yifan Yin, Xu Cheng, Fan Shi, Xiufeng Liu, Huan Huo, Shengyong Chen
- Abstract要約: 我々は,高次空間相互作用に基づくtextitHSI-ShipDetectionNet という,新しい軽量フレームワークを提案する。
HSI-ShipDetectionNetには、小型船専用の予測ブランチと、複雑さの低減を目的とした軽量なハイブリッドアテンションブロックが含まれている。
本モデルでは,パブリックなKaggle海洋船舶検出データセットを用いて評価を行い,複数の最先端モデルと比較した。
- 参考スコア(独自算出の注目度): 18.60170221864557
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate and reliable optical remote sensing image-based small-ship detection
is crucial for maritime surveillance systems, but existing methods often
struggle with balancing detection performance and computational complexity. In
this paper, we propose a novel lightweight framework called
\textit{HSI-ShipDetectionNet} that is based on high-order spatial interactions
and is suitable for deployment on resource-limited platforms, such as
satellites and unmanned aerial vehicles. HSI-ShipDetectionNet includes a
prediction branch specifically for tiny ships and a lightweight hybrid
attention block for reduced complexity. Additionally, the use of a high-order
spatial interactions module improves advanced feature understanding and
modeling ability. Our model is evaluated using the public Kaggle marine ship
detection dataset and compared with multiple state-of-the-art models including
small object detection models, lightweight detection models, and ship detection
models. The results show that HSI-ShipDetectionNet outperforms the other models
in terms of recall, and mean average precision (mAP) while being lightweight
and suitable for deployment on resource-limited platforms.
- Abstract(参考訳): 光リモートセンシング画像に基づく高精度で信頼性の高い小型船舶検出は海上監視システムには不可欠であるが、既存の手法では検出性能と計算複雑性のバランスに苦慮することが多い。
本稿では,高次空間相互作用に基づく,衛星や無人航空機などの資源制限されたプラットフォームへの展開に適した,新しい軽量フレームワークである \textit{hsi-shipdetectionnet}を提案する。
HSI-ShipDetectionNetには、小型船専用の予測ブランチと、複雑さの低減を目的とした軽量なハイブリッドアテンションブロックが含まれている。
さらに、高階空間相互作用モジュールの使用により、高度な特徴理解とモデリング能力が向上する。
本モデルはKaggle海洋船舶検出データセットを用いて評価し,小型物体検出モデル,軽量検出モデル,船舶検出モデルを含む複数の最先端モデルと比較した。
その結果、HSI-ShipDetectionNetは、リソース制限されたプラットフォームへのデプロイに適した軽量で平均精度(mAP)で他のモデルよりも優れていた。
関連論文リスト
- RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets [10.748210940033484]
RSNetは、SAR画像における船舶検出を強化する軽量フレームワークである。
Waveletpool-ContextGuided (WCG)は、グローバルなコンテキスト理解を導くバックボーンである。
ウェーブレットプール・スターフュージョン (WSF) は、残っているウェーブレット要素の乗算構造を用いてネックとして導入された。
論文 参考訳(メタデータ) (2024-10-30T14:46:35Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Low-Rank Adaption on Transformer-based Oriented Object Detector for Satellite Onboard Processing of Remote Sensing Images [5.234109158596138]
衛星搭載時の深層学習モデルは、リモートセンシング画像のリアルタイム解釈を可能にする。
本稿では,ローランク適応 (LoRA) モジュールを用いたパラメータ効率の高い微調整技術を提案する。
モデル全体のパラメータの12.4$%だけを微調整し、更新することで、完全な微調整モデルの性能の97$%から100$%までを達成できる。
論文 参考訳(メタデータ) (2024-06-04T15:00:49Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
空中画像における小さな物体検出は、コンピュータビジョンにおいて重要な課題である。
トランスフォーマーベースのモデルを用いた従来の手法は、特殊データベースの欠如に起因する制限に直面していることが多い。
本稿では,小型空中物体の検出とセグメンテーション機能を大幅に向上する2つの革新的なアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-02T19:47:08Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
本稿では,KD-RNetの知識蒸留による空中画像の回転物体検出のためのモデル圧縮手法を提案する。
大規模空中物体検出データセット(DOTA)による実験結果から,提案したKD-RNetモデルにより,パラメータ数を削減した平均値精度(mAP)が向上し,同時にKD-RNetは,基底アノテーションと高い重なり合う高品質検出を提供することで,性能を向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T14:24:16Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Concurrent Segmentation and Object Detection CNNs for Aircraft Detection
and Identification in Satellite Images [0.0]
本稿では,2つの全く異なる畳み込みニューラルネットワーク(CNN)を組み合わせて航空機を検出・識別する専用手法を提案する。
その結果, この組み合わせは各ユニタリモデルよりも有意に優れ, 偽陰性率を大幅に低下させることがわかった。
論文 参考訳(メタデータ) (2020-05-27T07:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。