Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding
- URL: http://arxiv.org/abs/2304.03907v5
- Date: Mon, 09 Jun 2025 02:24:01 GMT
- Title: Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding
- Authors: Zhaolin Ren, Tongzheng Ren, Haitong Ma, Na Li, Bo Dai,
- Abstract summary: This paper proposes an approach, Spectral Dynamics Embedding Control (SDEC), to optimal control for nonlinear systems.<n>It reveals an infinite-dimensional feature representation induced by the system's nonlinear dynamics, enabling a linear representation of the state-action value function.
- Score: 21.38845517949153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an approach, Spectral Dynamics Embedding Control (SDEC), to optimal control for nonlinear stochastic systems. This method reveals an infinite-dimensional feature representation induced by the system's nonlinear stochastic dynamics, enabling a linear representation of the state-action value function. For practical implementation, this representation is approximated using finite-dimensional trucations, specifically via two prominent kernel approximation methods: random feature truncation and Nystrom approximation. To characterize the effectiveness of these approximations, we provide an in-depth theoretical analysis to characterize the approximation error arising from the finite-dimension truncation and statistical error due to finite-sample approximation in both policy evaluation and policy optimization. Empirically, our algorithm performs favorably against existing stochastic control algorithms on several benchmark problems.
Related papers
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics.<n>We demonstrate performance of the algorithm on two PDEs: a linear equation which governs slightly compressible fluid flow in porous media and the wave equation.<n>Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest.
arXiv Detail & Related papers (2025-07-24T11:02:13Z) - WENDy for Nonlinear-in-Parameters ODEs [1.9573380763700712]
The Weak-form Estimation of Non-linear Dynamics (WEN) is extended to accommodate systems of ordinary differential equations that are nonlinear-ins.
We present results on a suite of benchmark systems to demonstrate the practical benefits of our approach.
arXiv Detail & Related papers (2025-02-13T01:40:21Z) - Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.<n>We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.<n>This appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Deterministic Trajectory Optimization through Probabilistic Optimal Control [3.2771631221674333]
We propose two new algorithms for discrete-time deterministic finite-horizon nonlinear optimal control problems.
Both algorithms are inspired by a novel theoretical paradigm known as probabilistic optimal control.
We show that the application of this algorithm results in a fixed point of probabilistic policies that converge to the deterministic optimal policy.
arXiv Detail & Related papers (2024-07-18T09:17:47Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - A Structure-Preserving Kernel Method for Learning Hamiltonian Systems [3.594638299627404]
A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions.
The paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required.
A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters.
arXiv Detail & Related papers (2024-03-15T07:20:21Z) - Minimax Optimal and Computationally Efficient Algorithms for Distributionally Robust Offline Reinforcement Learning [6.969949986864736]
Distributionally robust offline reinforcement learning (RL) seeks robust policy training against environment perturbation by modeling dynamics uncertainty.
We propose minimax optimal and computationally efficient algorithms realizing function approximation.
Our results uncover that function approximation in robust offline RL is essentially distinct from and probably harder than that in standard offline RL.
arXiv Detail & Related papers (2024-03-14T17:55:10Z) - Inference on Optimal Dynamic Policies via Softmax Approximation [27.396891119011215]
We show that a simple soft-max approximation to the optimal treatment regime can achieve valid inference on the truly optimal regime.
Our work combines techniques from semi-parametric inference and $g$-estimation, together with an appropriate array central limit theorem.
arXiv Detail & Related papers (2023-03-08T07:42:47Z) - Auxiliary Functions as Koopman Observables: Data-Driven Analysis of
Dynamical Systems via Polynomial Optimization [0.0]
We present a flexible data-driven method for system analysis that does not require explicit model discovery.
The method is rooted in well-established techniques for approxing the Koopman operator from data and is implemented as a semidefinite program that can be solved numerically.
arXiv Detail & Related papers (2023-03-02T18:44:18Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
We discuss an application of quadratic Approximation to statistical estimation of high-dimensional sparse parameters.
We show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution.
arXiv Detail & Related papers (2022-10-23T23:23:23Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
The problem of estimating a linear functional based on observational data is canonical in both the causal inference and bandit literatures.
We prove non-asymptotic upper bounds on the mean-squared error of such procedures.
We establish its instance-dependent optimality in finite samples via matching non-asymptotic local minimax lower bounds.
arXiv Detail & Related papers (2022-09-26T23:50:55Z) - Whiplash Gradient Descent Dynamics [2.0508733018954843]
We introduce the symplectic convergence analysis for the Whiplash system for convex functions.
We study the algorithm's performance for various costs and provide a practical methodology for analyzing convergence rates.
arXiv Detail & Related papers (2022-03-04T05:47:26Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs [113.8752163061151]
We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs)<n>We propose the underlineperiodically underlinerestarted underlineoptimistic underlinepolicy underlineoptimization algorithm (PROPO)<n>PROPO features two mechanisms: sliding-window-based policy evaluation and periodic-restart-based policy improvement.
arXiv Detail & Related papers (2021-10-18T02:33:20Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z) - Combining Gaussian processes and polynomial chaos expansions for
stochastic nonlinear model predictive control [0.0]
We introduce a new algorithm to explicitly consider time-invariant uncertainties in optimal control problems.
The main novelty in this paper is to use this combination in an efficient fashion to obtain mean and variance estimates of nonlinear transformations.
It is shown how to formulate both chance-constraints and a probabilistic objective for the optimal control problem.
arXiv Detail & Related papers (2021-03-09T14:25:08Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.