論文の概要: A new perspective on building efficient and expressive 3D equivariant
graph neural networks
- arxiv url: http://arxiv.org/abs/2304.04757v1
- Date: Fri, 7 Apr 2023 18:08:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 17:34:08.759873
- Title: A new perspective on building efficient and expressive 3D equivariant
graph neural networks
- Title(参考訳): 効率的かつ表現力のある3次元同変グラフニューラルネットワーク構築の新しい視点
- Authors: Weitao Du, Yuanqi Du, Limei Wang, Dieqiao Feng, Guifeng Wang, Shuiwang
Ji, Carla Gomes, Zhi-Ming Ma
- Abstract要約: 等変GNNの表現力を評価するための3次元同型階層を提案する。
我々の研究は、表現的かつ効率的な幾何学的GNNを設計するための2つの重要なモジュールに繋がる。
本理論の適用性を示すため,これらのモジュールを効果的に実装したLEFTNetを提案する。
- 参考スコア(独自算出の注目度): 39.0445472718248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric deep learning enables the encoding of physical symmetries in
modeling 3D objects. Despite rapid progress in encoding 3D symmetries into
Graph Neural Networks (GNNs), a comprehensive evaluation of the expressiveness
of these networks through a local-to-global analysis lacks today. In this
paper, we propose a local hierarchy of 3D isomorphism to evaluate the
expressive power of equivariant GNNs and investigate the process of
representing global geometric information from local patches. Our work leads to
two crucial modules for designing expressive and efficient geometric GNNs;
namely local substructure encoding (LSE) and frame transition encoding (FTE).
To demonstrate the applicability of our theory, we propose LEFTNet which
effectively implements these modules and achieves state-of-the-art performance
on both scalar-valued and vector-valued molecular property prediction tasks. We
further point out the design space for future developments of equivariant graph
neural networks. Our codes are available at
\url{https://github.com/yuanqidu/LeftNet}.
- Abstract(参考訳): 幾何学的深層学習は、3Dオブジェクトのモデリングにおける物理対称性の符号化を可能にする。
グラフニューラルネットワーク(GNN)への3次元対称性の符号化の急速な進歩にもかかわらず、これらのネットワークの局所的・言語的分析による表現性の包括的評価は欠如している。
本稿では,同変GNNの表現力を評価するために,局所的な3次元同型階層を提案し,局所パッチからグローバルな幾何学的情報を表現する過程について検討する。
我々の研究は、表現的かつ効率的な幾何学的GNN、すなわち局所部分構造符号化(LSE)とフレーム遷移符号化(FTE)を設計するための2つの重要なモジュールを生み出す。
本研究では,これらのモジュールを効果的に実装し,スカラー値とベクトル値の両方の分子特性予測タスクにおける最先端性能を実現するLEFTNetを提案する。
さらに、同変グラフニューラルネットワークの今後の発展のための設計空間を指摘する。
我々のコードは \url{https://github.com/yuanqidu/LeftNet} で入手できる。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - A quatum inspired neural network for geometric modeling [14.214656118952178]
本稿では,MPSベースのメッセージパッシング戦略を提案する。
本手法は,多体関係を効果的にモデル化し,平均場近似を抑える。
これは幾何学的GNNに固有の標準メッセージパッシングおよびレイヤ集約モジュールをシームレスに置き換える。
論文 参考訳(メタデータ) (2024-01-03T15:59:35Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Torsion Graph Neural Networks [21.965704710488232]
解析的トーション強化グラフニューラルネットワークモデルであるTorGNNを提案する。
われわれのTorGNNでは,各エッジに対して対応する局所単体複合体を同定し,解析トーションを算出する。
我々のTorGNNは両方のタスクにおいて優れた性能を達成でき、様々な最先端モデルより優れていることが判明した。
論文 参考訳(メタデータ) (2023-06-23T15:02:23Z) - Dense Graph Convolutional Neural Networks on 3D Meshes for 3D Object
Segmentation and Classification [0.0]
本稿では3次元メッシュ上でのグラフ畳み込みニューラルネットワーク(GCN)の設計について述べる。
メッシュの顔を基本処理単位とし、各ノードが顔に対応するグラフとして3Dメッシュを表現する。
論文 参考訳(メタデータ) (2021-06-30T02:17:16Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。