論文の概要: Reinforcement Learning Quantum Local Search
- arxiv url: http://arxiv.org/abs/2304.06473v1
- Date: Thu, 13 Apr 2023 13:07:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 14:36:18.825460
- Title: Reinforcement Learning Quantum Local Search
- Title(参考訳): 強化学習量子局所探索
- Authors: Chen-Yu Liu, Hsi-Sheng Goan
- Abstract要約: 我々は、量子局所探索(QLS)におけるサブプロブレム選択の改善のためのエージェントを訓練するための強化学習(RL)に基づくアプローチを提案する。
提案手法は,完全連結ランダムイジング問題に対するQLSの平均近似比を効果的に向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum Local Search (QLS) is a promising approach that employs small-scale
quantum computers to tackle large combinatorial optimization problems through
local search on quantum hardware, starting from an initial point. However, the
random selection of the sub-problem to solve in QLS may not be efficient. In
this study, we propose a reinforcement learning (RL) based approach to train an
agent for improved subproblem selection in QLS, beyond random selection. Our
results demonstrate that the RL agent effectively enhances the average
approximation ratio of QLS on fully-connected random Ising problems, indicating
the potential of combining RL techniques with Noisy Intermediate-scale Quantum
(NISQ) algorithms. This research opens a promising direction for integrating RL
into quantum computing to enhance the performance of optimization tasks.
- Abstract(参考訳): 量子局所探索(quantum Local Search, QLS)は、量子ハードウェア上の局所探索を通じて大規模な組合せ最適化問題に対処するために、小規模の量子コンピュータを利用する有望なアプローチである。
しかし、QLSで解くサブプロブレムのランダムな選択は効率的ではないかもしれない。
本研究では,ランダム選択を超えて,qlsのサブプロブレム選択を改善するエージェントを訓練するための強化学習(rl)手法を提案する。
その結果, RL エージェントは完全連結乱数イジング問題に対する QLS の平均近似比を効果的に向上させ, ノイズ中間規模量子 (NISQ) アルゴリズムと RL 手法を組み合わせる可能性を示している。
本研究は、最適化タスクの性能を高めるために、RLを量子コンピューティングに統合するための有望な方向を開く。
関連論文リスト
- Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms [0.0]
我々は,ハイブリッドシステムにおける時間的複雑性,スケーラビリティ,通信オーバーヘッドを分析する理論的モデルを構築した。
小型のMax-Cutインスタンス上でのQAOAの性能を評価する。
論文 参考訳(メタデータ) (2024-10-21T04:10:54Z) - A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
変分量子アルゴリズム(VQA)は、短期量子ハードウェアの限られた能力に対応するために設計された、ハイブリッド量子古典法の一種である。
本稿では,正規パラメータパターンの活用が決定木構造に深く影響し,フレキシブルかつノイズ耐性のある最適化戦略を可能にすることを示す。
論文 参考訳(メタデータ) (2024-08-22T18:00:02Z) - Parallel Quantum Local Search via Evolutionary Mechanism [0.9208007322096533]
小型量子コンピュータの能力を活用した並列量子局所探索(PQLS)手法を提案する。
我々のアプローチは、複数のQLS経路を同時に実行し、ある間隔で最も効果的な結果を集約して世代を確立することで、この制約を超越する」。
本研究は,Ising問題の解決における並列量子コンピューティングの深い影響を示すものである。
論文 参考訳(メタデータ) (2024-06-10T16:35:52Z) - Quantum Multi-Agent Reinforcement Learning for Aerial Ad-hoc Networks [0.19791587637442667]
本稿では,航空通信のユースケースを提示し,それを解くためのハイブリッド量子古典型MLアルゴリズムを提案する。
その結果,古典的アルゴリズムに匹敵する量子化解の性能はわずかに向上した。
これらの有望な結果は、産業関連複雑なユースケースに対するQMARLの可能性を示している。
論文 参考訳(メタデータ) (2024-04-26T15:57:06Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
量子コンピューティングネットワークは、大規模な生成AI計算タスクと高度な量子アルゴリズムを実行する。
量子コンピューティングネットワークにおける効率的なリソース割り当ては、量子ビットの可変性とネットワークの複雑さのために重要な課題である。
我々は、生成学習から量子機械学習まで、最先端強化学習(RL)アルゴリズムを導入し、最適な量子リソース割り当てを行う。
論文 参考訳(メタデータ) (2024-01-13T17:16:38Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。