論文の概要: Parallel Quantum Local Search via Evolutionary Mechanism
- arxiv url: http://arxiv.org/abs/2406.06445v1
- Date: Mon, 10 Jun 2024 16:35:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:59:23.958463
- Title: Parallel Quantum Local Search via Evolutionary Mechanism
- Title(参考訳): 進化機構による並列量子局所探索
- Authors: Chen-Yu Liu, Kuan-Cheng Chen,
- Abstract要約: 小型量子コンピュータの能力を活用した並列量子局所探索(PQLS)手法を提案する。
我々のアプローチは、複数のQLS経路を同時に実行し、ある間隔で最も効果的な結果を集約して世代を確立することで、この制約を超越する」。
本研究は,Ising問題の解決における並列量子コンピューティングの深い影響を示すものである。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose an innovative Parallel Quantum Local Search (PQLS) methodology that leverages the capabilities of small-scale quantum computers to efficiently address complex combinatorial optimization problems. Traditional Quantum Local Search (QLS) methods face limitations due to the sequential nature of solving sub-problems, which arises from dependencies between their solutions. Our approach transcends this constraint by simultaneously executing multiple QLS pathways and aggregating their most effective outcomes at certain intervals to establish a ``generation''. Each subsequent generation commences with the optimal solution from its predecessor, thereby significantly accelerating the convergence towards an optimal solution. Our findings demonstrate the profound impact of parallel quantum computing in enhancing the resolution of Ising problems, which are synonymous with combinatorial optimization challenges.
- Abstract(参考訳): 本稿では,PQLS(Parallel Quantum Local Search)手法を提案する。
従来のQuantum Local Search(QLS)メソッドは、サブプロブレムの解決というシーケンシャルな性質のために制限に直面している。
提案手法は,複数のQLS経路を同時に実行し,その最も効果的な結果を一定間隔で集約して'世代'を確立することによって,この制約を超越する。
それぞれの生成は前者からの最適解から始まり、最適解への収束を著しく加速する。
本研究は並列量子コンピューティングがIsing問題の解決に深く影響していることを示し,これは組合せ最適化の課題と同義である。
関連論文リスト
- A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
変分量子アルゴリズム(VQA)は、短期量子ハードウェアの限られた能力に対応するために設計された、ハイブリッド量子古典法の一種である。
本稿では,正規パラメータパターンの活用が決定木構造に深く影響し,フレキシブルかつノイズ耐性のある最適化戦略を可能にすることを示す。
論文 参考訳(メタデータ) (2024-08-22T18:00:02Z) - Quantum Local Search for Traveling Salesman Problem with Path-Slicing Strategy [1.8186826508785554]
我々は,トラベリングセールスマン問題(TSP)の解を最適化するために,量子局所探索と統合された新しいパススライシング戦略を提案する。
我々は、TSPを管理可能なサブプロブレムに分割するために、k平均とアンチk平均クラスタリングを含む様々なパススライシング手法を探索する。
これらは量子や古典的な解法を用いて解かれる。
論文 参考訳(メタデータ) (2024-07-18T15:55:01Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
我々は,多目的最適化問題を解くために,近距離量子コンピュータを応用できる手法を開発した。
量子近似最適化アルゴリズム(QAOA)に基づく実装に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-16T09:22:01Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。