論文の概要: Physical Knowledge Enhanced Deep Neural Network for Sea Surface
Temperature Prediction
- arxiv url: http://arxiv.org/abs/2304.09376v1
- Date: Wed, 19 Apr 2023 02:08:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 15:47:22.898974
- Title: Physical Knowledge Enhanced Deep Neural Network for Sea Surface
Temperature Prediction
- Title(参考訳): 海洋表面温度予測のための物理知識強化深部ニューラルネットワーク
- Authors: Yuxin Meng, Feng Gao, Eric Rigall, Ran Dong, Junyu Dong, Qian Du
- Abstract要約: 本研究では,歴史的観測から数値モデルへ物理知識を伝達する海面温度予測手法を提案する。
具体的には,エンコーダとGAN(Generative Adversarial Network)を組み合わせて,観測データから物理知識を抽出する。
数値モデルデータは、事前訓練されたモデルに入力され、物理強調データを生成し、SST予測に使用することができる。
- 参考スコア(独自算出の注目度): 29.989387641655625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally, numerical models have been deployed in oceanography studies to
simulate ocean dynamics by representing physical equations. However, many
factors pertaining to ocean dynamics seem to be ill-defined. We argue that
transferring physical knowledge from observed data could further improve the
accuracy of numerical models when predicting Sea Surface Temperature (SST).
Recently, the advances in earth observation technologies have yielded a
monumental growth of data. Consequently, it is imperative to explore ways in
which to improve and supplement numerical models utilizing the ever-increasing
amounts of historical observational data. To this end, we introduce a method
for SST prediction that transfers physical knowledge from historical
observations to numerical models. Specifically, we use a combination of an
encoder and a generative adversarial network (GAN) to capture physical
knowledge from the observed data. The numerical model data is then fed into the
pre-trained model to generate physics-enhanced data, which can then be used for
SST prediction. Experimental results demonstrate that the proposed method
considerably enhances SST prediction performance when compared to several
state-of-the-art baselines.
- Abstract(参考訳): 伝統的に、数値モデルは物理方程式を表現して海洋力学をシミュレートするために海洋学研究に展開されてきた。
しかし、海洋力学に関連する多くの要因は未定義であるようである。
観測データからの物理知識の伝達は、海面温度予測(sst)における数値モデルの精度をさらに向上させることができる。
近年、地球観測技術の進歩は、データの顕著な成長をもたらした。
その結果,観測データの蓄積量の増加にともなう数値モデルの改善と補修の方法を探究することが重要である。
そこで本研究では,歴史的観測から数値モデルへ物理知識を伝達するSST予測手法を提案する。
具体的には、エンコーダと生成的逆ネットワーク(gan)の組み合わせを用いて、観測データから物理的知識を捉える。
数値モデルデータは事前訓練されたモデルに入力され、物理強調データを生成し、SST予測に使用できる。
実験により,提案手法は,いくつかの最先端ベースラインと比較して,SST予測性能を著しく向上することを示した。
関連論文リスト
- Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts has challenged our approach to numerical weather prediction。
データ駆動システムは、過去の気象の長い歴史記録から学ぶことによって、将来の天気を予測するために訓練されている。
そこで我々は,ニューラルネットワークをトレーニングし,過去の観測から将来の天気を予測する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T12:23:26Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models [2.956865819041394]
海洋プロセスはハリケーンや干ばつなどの現象に影響を与える。
理想的な海洋モデルでは、摂動パラメータアンサンブルデータと訓練された代理ニューラルネットワークモデルを生成した。
ニューラルサロゲートは1ステップの前進ダイナミクスを正確に予測し、パラメトリック感度を計算した。
論文 参考訳(メタデータ) (2023-11-10T16:37:43Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Evaluation of Deep Neural Operator Models toward Ocean Forecasting [0.3774866290142281]
ディープ・ニューラル・オペレーター・モデルは、古典的な流体の流れと現実的な海洋力学のシミュレーションを予測することができる。
我々はまず,シリンダーを過ぎる2次元流体の模擬実験で,このような深部ニューラルネットワークモデルの能力を評価する。
次に,中部大西洋帯およびマサチューセッツ湾における海洋表層循環予測への応用について検討した。
論文 参考訳(メタデータ) (2023-08-22T22:38:54Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Modeling Oceanic Variables with Dynamic Graph Neural Networks [0.09830751917335563]
ブラジルのサントス・サンテ・ビセンテ・ベルティオガ地域における環境変数を予測するためのデータ駆動手法について述べる。
我々のモデルは、最先端のシーケンスモデルとリレーショナルモデルとを結合することにより、時間的および空間的帰納バイアスの両方を利用する。
実験の結果、柔軟性とドメイン知識の依存性のほとんどを維持しながら、私たちのモデルによってより良い結果が得られます。
論文 参考訳(メタデータ) (2022-06-25T22:43:02Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction [24.55780949103687]
海面下温度は気候変動の地球温暖化の影響を受けている。
既存の研究は一般に物理学に基づく数値モデルまたはデータに基づくモデルに基づいている。
本稿では,GAN(Generative Adversarial Network)と数値モデルを組み合わせた,海底温度の予測手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T23:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。