論文の概要: STFM: A Spatio-Temporal Information Fusion Model Based on Phase Space Reconstruction for Sea Surface Temperature Prediction
- arxiv url: http://arxiv.org/abs/2504.16970v1
- Date: Wed, 23 Apr 2025 14:14:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.106258
- Title: STFM: A Spatio-Temporal Information Fusion Model Based on Phase Space Reconstruction for Sea Surface Temperature Prediction
- Title(参考訳): STFM:海面温度予測のための位相空間再構成に基づく時空間情報融合モデル
- Authors: Yin Wang, Chunlin Gong, Xiang Wu, Hanleran Zhang,
- Abstract要約: 本研究では,データ駆動技術のみに基づく予測フレームワークを提案する。
従来のモデルとは異なり,本手法は位相空間再構成によりSSTのダイナミックスを効率的に捕捉する。
- 参考スコア(独自算出の注目度): 7.925940960061756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The sea surface temperature (SST), a key environmental parameter, is crucial to optimizing production planning, making its accurate prediction a vital research topic. However, the inherent nonlinearity of the marine dynamic system presents significant challenges. Current forecasting methods mainly include physics-based numerical simulations and data-driven machine learning approaches. The former, while describing SST evolution through differential equations, suffers from high computational complexity and limited applicability, whereas the latter, despite its computational benefits, requires large datasets and faces interpretability challenges. This study presents a prediction framework based solely on data-driven techniques. Using phase space reconstruction, we construct initial-delay attractor pairs with a mathematical homeomorphism and design a Spatio-Temporal Fusion Mapping (STFM) to uncover their intrinsic connections. Unlike conventional models, our method captures SST dynamics efficiently through phase space reconstruction and achieves high prediction accuracy with minimal training data in comparative tests
- Abstract(参考訳): 重要な環境パラメータである海面温度(SST)は、生産計画の最適化に不可欠であり、正確な予測を重要な研究トピックにしている。
しかし、海洋力学系の固有の非線形性は大きな課題を呈している。
現在の予測手法は主に物理に基づく数値シミュレーションとデータ駆動機械学習アプローチである。
前者は微分方程式によるSST進化を記述する一方で、高い計算複雑性と限定的な適用性に悩まされており、後者は計算上の利点にもかかわらず、大きなデータセットを必要とし、解釈可能性の問題に直面している。
本研究では,データ駆動技術のみに基づく予測フレームワークを提案する。
位相空間再構成を用いて、数学的同型を持つ初期遅延アトラクタペアを構築し、その固有接続を明らかにするために時空間融合マッピング(STFM)を設計する。
従来のモデルとは異なり,本手法は位相空間再構成によりSSTのダイナミックスを効率的に捕捉し,比較試験において最小限のトレーニングデータを用いて高い予測精度を実現する。
関連論文リスト
- HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization [26.472939569860607]
HyperFLINTは、流れ場を推定し、時間的に補間し、アンサンブルデータにおけるパラメータ空間探索を容易にする、新しいディープラーニングベースのアプローチである。
一連の実験では、HyperFLINTのフロー場推定性能が大幅に向上し、パラメータ空間探索が可能になった。
論文 参考訳(メタデータ) (2024-12-05T12:01:20Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Physics-Informed Machine Learning Towards A Real-Time Spacecraft Thermal Simulator [15.313871831214902]
ここで提示されるPIMLモデルまたはハイブリッドモデルは、軌道上の熱負荷条件によって与えられるノイズの低減を予測するニューラルネットワークで構成されている。
我々は,ハイブリッドモデルの計算性能と精度を,データ駆動型ニューラルネットモデルと,地球周回小型宇宙船の高忠実度有限差分モデルと比較した。
PIMLベースのアクティブノダライゼーションアプローチは、ニューラルネットワークモデルや粗いメッシュモデルよりもはるかに優れた一般化を提供すると同時に、高忠実度モデルと比較して計算コストを最大1.7倍削減する。
論文 参考訳(メタデータ) (2024-07-08T16:38:52Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - Physical Knowledge Enhanced Deep Neural Network for Sea Surface
Temperature Prediction [29.989387641655625]
本研究では,歴史的観測から数値モデルへ物理知識を伝達する海面温度予測手法を提案する。
具体的には,エンコーダとGAN(Generative Adversarial Network)を組み合わせて,観測データから物理知識を抽出する。
数値モデルデータは、事前訓練されたモデルに入力され、物理強調データを生成し、SST予測に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T02:08:54Z) - Towards Spatio-temporal Sea Surface Temperature Forecasting via Static
and Dynamic Learnable Personalized Graph Convolution Network [9.189893653029076]
本稿では,静的で動的に学習可能なグラフ畳み込みネットワーク(SD-LPGC)を提案する。
具体的には、SST信号に隠された安定な長期的および短期的な進化パターンをモデル化するために、2つのグラフ学習層が構築される。
そして、学習可能なパーソナライズされた畳み込み層が、この情報を融合するように設計されている。
論文 参考訳(メタデータ) (2023-04-12T14:35:38Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。