Experimentally Certified Transmission of a Quantum Message through an
Untrusted and Lossy Quantum Channel via Bell's Theorem
- URL: http://arxiv.org/abs/2304.09605v2
- Date: Thu, 7 Dec 2023 08:59:42 GMT
- Title: Experimentally Certified Transmission of a Quantum Message through an
Untrusted and Lossy Quantum Channel via Bell's Theorem
- Authors: Simon Neves, Laura dos Santos Martins, Verena Yacoub, Pascal Lefebvre,
Ivan Supic, Damian Markham, and Eleni Diamanti
- Abstract summary: In adversarial scenarios, a certification method can be vulnerable to attacks if too much trust is placed on the underlying system.
Here, we propose a protocol in a device independent framework, which allows for the certification of practical quantum transmission links.
In view of the use of the certified transmitted states for follow-up applications, our protocol moves beyond certification of the channel to allow us to estimate the quality of the transmitted quantum message itself.
- Score: 1.0470286407954037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum transmission links are central elements in essentially all protocols
involving the exchange of quantum messages. Emerging progress in quantum
technologies involving such links needs to be accompanied by appropriate
certification tools. In adversarial scenarios, a certification method can be
vulnerable to attacks if too much trust is placed on the underlying system.
Here, we propose a protocol in a device independent framework, which allows for
the certification of practical quantum transmission links in scenarios where
minimal assumptions are made about the functioning of the certification setup.
In particular, we take unavoidable transmission losses into account by modeling
the link as a completely-positive trace-decreasing map. We also, crucially,
remove the assumption of independent and identically distributed samples, which
is known to be incompatible with adversarial settings. Finally, in view of the
use of the certified transmitted states for follow-up applications, our
protocol moves beyond certification of the channel to allow us to estimate the
quality of the transmitted quantum message itself. To illustrate the practical
relevance and the feasibility of our protocol with currently available
technology we provide an experimental implementation based on a
state-of-the-art polarization entangled photon pair source in a Sagnac
configuration and analyze its robustness for realistic losses and errors.
Related papers
- User-Authenticated Device-Independent Quantum Secure Direct Communication Protocol [5.420275467831935]
Device-Independent Quantum Secure Direct Communication (DI-QSDC) enhances quantum cryptography.
We propose the first of its kind DI-QSDC protocol with user identity authentication.
arXiv Detail & Related papers (2024-09-16T16:03:22Z) - Experimental Sample-Efficient and Device-Independent GHZ State Certification [1.1650821883155187]
certification of quantum resources is a critical tool in the development of quantum information processing.
We show the efficient and device-independent certification of a single copy of a four-qubit GHZ state.
arXiv Detail & Related papers (2024-07-18T14:01:42Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Breaking universal limitations on quantum conference key agreement
without quantum memory [6.300599548850421]
We report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel.
Our protocol can break key rate bounds on quantum communication over quantum network without quantum memory.
Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
arXiv Detail & Related papers (2022-12-10T06:37:53Z) - Resource analysis for quantum-aided Byzantine agreement with the four-qubit singlet state [1.2094859111770522]
In distributed computing, a Byzantine fault is a condition where a component behaves inconsistently, showing different symptoms to different components of the system.
Our work highlights important engineering aspects of the future deployment of quantum communication protocols with multi-qubit entangled states.
arXiv Detail & Related papers (2022-07-11T15:17:58Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.