論文の概要: Neural Radiance Fields: Past, Present, and Future
- arxiv url: http://arxiv.org/abs/2304.10050v1
- Date: Thu, 20 Apr 2023 02:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 14:37:27.101013
- Title: Neural Radiance Fields: Past, Present, and Future
- Title(参考訳): ニューラル・ラジアンス・フィールド:過去・現在・未来
- Authors: Ansh Mittal
- Abstract要約: MildenhallらがNeRFに関する論文で行った試みは、コンピュータグラフィックス、ロボティクス、コンピュータビジョンのブームにつながり、高解像度の低ストレージ拡張現実と仮想現実ベースの3Dモデルは、NeRFに関連する500以上のプレプリントのリセットから注目を集めている。
このサーベイは、レンダリング、インプリシトラーニング、NeRFの歴史、NeRFの研究の進展、そして今日の世界のNeRFの潜在的な応用と意味を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The various aspects like modeling and interpreting 3D environments and
surroundings have enticed humans to progress their research in 3D Computer
Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall
et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in
Computer Graphics, Robotics, Computer Vision, and the possible scope of
High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D
models have gained traction from res with more than 500 preprints related to
NeRFs published. This paper serves as a bridge for people starting to study
these fields by building on the basics of Mathematics, Geometry, Computer
Vision, and Computer Graphics to the difficulties encountered in Implicit
Representations at the intersection of all these disciplines. This survey
provides the history of rendering, Implicit Learning, and NeRFs, the
progression of research on NeRFs, and the potential applications and
implications of NeRFs in today's world. In doing so, this survey categorizes
all the NeRF-related research in terms of the datasets used, objective
functions, applications solved, and evaluation criteria for these applications.
- Abstract(参考訳): 3D環境や環境のモデリングや解釈といったさまざまな側面は、人間に3Dコンピュータビジョン、コンピュータグラフィックス、機械学習の研究を進めるよう促している。
MildenhallらがNeRF(Neural Radiance Fields)に関する論文で行った試みは、コンピュータグラフィックス、ロボティクス、コンピュータビジョンのブームにつながり、高解像度の低ストレージ拡張現実と仮想現実ベースの3Dモデルは、NeRFに関連する500以上のプレプリントのリセットから注目を集めている。
本論文は, 数学, 幾何学, コンピュータビジョン, コンピュータグラフィックスの基礎を基礎として, これらすべての分野の交点における暗黙の表現に遭遇する困難さを解消し, それらの分野を研究を始める人々にとっての橋渡しとなる。
このサーベイは、レンダリング、インプリシトラーニング、NeRFの歴史、NeRFの研究の進展、そして今日の世界におけるNeRFの潜在的な応用と意味を提供する。
そこで本調査では, 使用するデータセット, 目的関数, アプリケーション解決, 評価基準の観点から, 全NeRF関連研究を分類した。
関連論文リスト
- Neural Radiance Fields for the Real World: A Survey [19.916224575959394]
ニューラル・ラジアンス・フィールド(NeRF)は、リリース以来、3Dシーンの表現をリフォームしてきた。
NeRFは、2D画像から複雑な3Dシーンを効果的に再構築することができる。
この調査は重要な理論上の進歩と代替的な表現をまとめたものである。
論文 参考訳(メタデータ) (2025-01-22T18:59:10Z) - NeRF in Robotics: A Survey [95.11502610414803]
近年の神経暗黙表現の出現は、コンピュータビジョンとロボティクス分野に急進的な革新をもたらした。
NeRFは、単純化された数学的モデル、コンパクトな環境記憶、連続的なシーン表現などの大きな表現上の利点から、この傾向を引き起こしている。
論文 参考訳(メタデータ) (2024-05-02T14:38:18Z) - Recent Trends in 3D Reconstruction of General Non-Rigid Scenes [104.07781871008186]
コンピュータグラフィックスやコンピュータビジョンにおいて、3次元幾何学、外観、実際のシーンの動きを含む現実世界のモデルの再構築が不可欠である。
これは、映画産業やAR/VRアプリケーションに有用な、フォトリアリスティックなノベルビューの合成を可能にする。
この最新技術レポート(STAR)は、モノクロおよびマルチビュー入力による最新技術の概要を読者に提供する。
論文 参考訳(メタデータ) (2024-03-22T09:46:11Z) - 3D Gaussian as a New Era: A Survey [19.47965615118856]
3D Gaussian Splatting (3D-GS) はコンピュータグラフィックスの分野で大きな進歩を遂げている。
ニューラルネットワーク(Neural Radiance Fields、NeRF)のようなニューラルネットワークに依存しない、明示的なシーン表現と新しいビュー合成を提供する。
ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実(VR/拡張現実)など、さまざまな分野の応用を見出している。
論文 参考訳(メタデータ) (2024-02-11T12:33:08Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) は、明示的なラディアンス場とコンピュータグラフィックスの領域において、トランスフォーメーション技術として登場した。
本稿では,3D GSの領域における最近の発展と重要な貢献について,初めて体系的に概説する。
前例のないレンダリング速度を実現することで、3D GSは、仮想現実からインタラクティブメディアなど、数多くのアプリケーションを開くことができる。
論文 参考訳(メタデータ) (2024-01-08T13:42:59Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - NeRFs: The Search for the Best 3D Representation [27.339452004523082]
我々は、ビュー合成と関連する問題に最適な3D表現を見つけるために、30年にわたる探究を簡潔にレビューする。
次に、NeRF表現の観点から新しい展開を記述し、3D表現の将来についていくつかの観察と考察を行う。
論文 参考訳(メタデータ) (2023-08-05T00:10:32Z) - BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields [1.1531932979578041]
NeRF(Neural Radiance Fieldsの略)は、AIアルゴリズムを使用して2D画像から3Dオブジェクトを生成する最近のイノベーションである。
この調査は、最近のNeRFの進歩を概観し、それらのアーキテクチャ設計に従って分類する。
論文 参考訳(メタデータ) (2023-06-05T16:10:21Z) - NeRF: Neural Radiance Field in 3D Vision, A Comprehensive Review [19.67372661944804]
ニューラル・ラジアンス・フィールド(NeRF)は近年,コンピュータビジョンの分野で重要な発展を遂げている。
NeRFモデルは、ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実など、さまざまな応用を見出している。
論文 参考訳(メタデータ) (2022-10-01T21:35:11Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
機械学習の最近の進歩は、座標ベースニューラルネットワークを用いた視覚コンピューティング問題の解決への関心が高まっている。
ニューラルネットワークは、3D形状と画像の合成、人体のアニメーション、3D再構成、ポーズ推定に成功している。
本報告は、文脈、数学的基礎、および、ニューラルネットワークに関する文献の広範なレビューを提供する。
論文 参考訳(メタデータ) (2021-11-22T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。