論文の概要: A Survey on 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2401.03890v4
- Date: Mon, 22 Jul 2024 05:13:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 03:12:35.378234
- Title: A Survey on 3D Gaussian Splatting
- Title(参考訳): 3次元ガウス平滑化に関する調査研究
- Authors: Guikun Chen, Wenguan Wang,
- Abstract要約: 3D Gaussian splatting (GS) は、明示的なラディアンス場とコンピュータグラフィックスの領域において、トランスフォーメーション技術として登場した。
本稿では,3D GSの領域における最近の発展と重要な貢献について,初めて体系的に概説する。
前例のないレンダリング速度を実現することで、3D GSは、仮想現実からインタラクティブメディアなど、数多くのアプリケーションを開くことができる。
- 参考スコア(独自算出の注目度): 51.96747208581275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian splatting (GS) has recently emerged as a transformative technique in the realm of explicit radiance field and computer graphics. This innovative approach, characterized by the utilization of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research in this domain. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in applicable and explicit radiance field representation.
- Abstract(参考訳): 3D Gaussian splatting (GS) は、近年、明示的なラディアンス場とコンピュータグラフィックスの領域において、トランスフォーメーション技術として登場した。
この革新的なアプローチは、数百万の学習可能な3Dガウスの活用を特徴とし、主に暗黙的な座標に基づくモデルを用いて空間座標をピクセル値にマッピングする主流の神経放射場アプローチから著しく離れている。
3D GSは、明示的なシーン表現と差別化可能なレンダリングアルゴリズムを持ち、リアルタイムレンダリング能力を約束するだけでなく、前例のないレベルの編集性も導入している。
これにより、3D GSは次世代の3D再構成と表現のための潜在的なゲームチェンジャーとして位置づけられる。
本稿では,3D GSの領域における最近の発展と重要な貢献について,初めて体系的に概説する。
まず、3D GSの出現の背景にある基礎となる原理と推進力の詳細な調査から始め、その意義を理解するための基礎を築き上げます。
議論の焦点は、3D GSの実用性である。
前例のないレンダリング速度を実現することで、3D GSは、仮想現実からインタラクティブメディアまで、さまざまなアプリケーションを開きます。
これは、主要な3D GSモデルの比較分析によって補完され、様々なベンチマークタスクで評価され、パフォーマンスと実用性を強調している。
この調査は、現在の課題を特定し、この領域における将来の研究への潜在的な道を提案することで締めくくられる。
本調査は,新入生研究者と調味研究者の双方にとって貴重な資源を提供することを目標とし,適用可能で明示的な放射野表現のさらなる探索と発展を促進することを目的とする。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
RGB画像に基づく都市景観の全体的理解は、難しいが重要な問題である。
我々の主な考え方は、静的な3Dガウスと動的なガウスの組合せを用いた幾何学、外観、意味論、運動の合同最適化である。
提案手法は,2次元および3次元のセマンティック情報を高精度に生成し,新たな視点をリアルタイムに描画する機能を提供する。
論文 参考訳(メタデータ) (2024-03-19T13:39:05Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3次元ガウススプラッティングは、新規なビュー合成のレンダリング速度を大幅に高速化した。
3D Gaussian Splattingの明示的な表現は、動的再構成、幾何学的編集、物理シミュレーションなどの編集作業を容易にする。
本稿では,3次元再構成,3次元編集,その他の下流アプリケーションに大まかに分類できる最近の3次元ガウス散乱法について,文献的考察を行う。
論文 参考訳(メタデータ) (2024-03-17T07:57:08Z) - 3D Gaussian as a New Era: A Survey [19.47965615118856]
3D Gaussian Splatting (3D-GS) はコンピュータグラフィックスの分野で大きな進歩を遂げている。
ニューラルネットワーク(Neural Radiance Fields、NeRF)のようなニューラルネットワークに依存しない、明示的なシーン表現と新しいビュー合成を提供する。
ロボット工学、都市マッピング、自律ナビゲーション、仮想現実/拡張現実(VR/拡張現実)など、さまざまな分野の応用を見出している。
論文 参考訳(メタデータ) (2024-02-11T12:33:08Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
基礎モデルの視覚言語埋め込みを3次元ガウススプラッティング(GS)に組み込んだ基礎モデル埋め込みガウススプラッティング(S)を提案する。
結果は、多面的なセマンティック一貫性を示し、様々な下流タスクを容易にし、オープン語彙言語に基づくオブジェクト検出において、最先端のメソッドを10.2%上回った。
本研究では,視覚・言語・3次元シーン表現の交わりについて検討し,制御されていない現実世界環境におけるシーン理解の強化の道を開く。
論文 参考訳(メタデータ) (2024-01-03T20:39:02Z) - HeadGaS: Real-Time Animatable Head Avatars via 3D Gaussian Splatting [9.98045783250373]
本稿では,3次元頭部再構成とアニメーションに3次元ガウスプレート(3DGS)を用いた最初のモデルであるHeadGaSを提案する。
我々は,HeadGaSが,ベースラインを最大2dBまで越えた,リアルタイム推論フレームレートの最先端結果を提供することを示した。
論文 参考訳(メタデータ) (2023-12-05T17:19:22Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
生成モデルは、新しいインスタンスを生成することによって観測データの分布を学習することを目的としている。
最近、研究者は焦点を2Dから3Dにシフトし始めた。
3Dデータの表現は、非常に大きな課題をもたらします。
論文 参考訳(メタデータ) (2022-10-27T17:59:50Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。