論文の概要: Structure-reinforced Transformer for Dynamic Graph Representation Learning with Edge Temporal States
- arxiv url: http://arxiv.org/abs/2304.10079v2
- Date: Wed, 3 Apr 2024 15:46:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 23:37:29.450298
- Title: Structure-reinforced Transformer for Dynamic Graph Representation Learning with Edge Temporal States
- Title(参考訳): エッジ時間状態を用いた動的グラフ表現学習のための構造強化変換器
- Authors: Shengxiang Hu, Guobing Zou, Song Yang, Shiyi Lin, Bofeng Zhang, Yixin Chen,
- Abstract要約: Recurrent Structure-Reinforced Graph Transformer (RSGT) という新しい動的グラフ表現学習フレームワークを導入する。
RSGTは最初、2つの連続するスナップショットの違いに基づいて、異なるエッジタイプとウェイトを利用して、エッジの時間的ステータスを明示的にモデル化した。
グラフトポロジ構造と進化力学の両方を符号化した時間ノード表現を捕捉する構造強化グラフ変換器を提案する。
- 参考スコア(独自算出の注目度): 8.577434144370004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning field of dynamic graph representation learning, fuelled by the increasing demand for graph data analysis in real-world applications, poses both enticing opportunities and formidable challenges. Despite the promising results achieved by recent research leveraging recurrent neural networks (RNNs) and graph neural networks (GNNs), these approaches often fail to adequately consider the impact of the edge temporal states on the strength of inter-node relationships across different time slices, further overlooking the dynamic changes in node features induced by fluctuations in relationship strength. Furthermore, the extraction of global structural features is hindered by the inherent over-smoothing drawback of GNNs, which in turn limits their overall performance. In this paper, we introduce a novel dynamic graph representation learning framework namely Recurrent Structure-reinforced Graph Transformer (RSGT), which initially models the temporal status of edges explicitly by utilizing different edge types and weights based on the differences between any two consecutive snapshots. In this manner, the varying edge temporal states are mapped as a part of the topological structure of the graph. Subsequently, a structure-reinforced graph transformer is proposed to capture temporal node representations that encoding both the graph topological structure and evolving dynamics,through a recurrent learning paradigm. Our experimental evaluations, conducted on four real-world datasets, underscore the superior performance of the RSGT in the realm of discrete dynamic graph representation learning. The results reveal that RSGT consistently surpasses competing methods in dynamic link prediction tasks.
- Abstract(参考訳): 動的グラフ表現学習の飛躍的な分野は、現実世界のアプリケーションにおけるグラフデータ分析の需要の増加に拍車をかけたものであり、好機と恐ろしい課題の両方を招いている。
リカレントニューラルネットワーク(RNN)とグラフニューラルネットワーク(GNN)を活用する最近の研究によって達成された有望な結果にもかかわらず、これらのアプローチは、異なる時間スライス間のノード間関係の強さに対するエッジ時間状態の影響を適切に考慮できず、さらに関係強度の変動によって引き起こされるノード特徴の動的変化を見越す。
さらに、グローバルな構造的特徴の抽出は、GNNの過度に滑らかな欠点によって妨げられ、それによって全体の性能が制限される。
本稿では,新しい動的グラフ表現学習フレームワークであるRecurrent Structure-Reinforced Graph Transformer(RSGT)を提案する。
このようにして、異なる辺の時間状態は、グラフの位相構造の一部としてマッピングされる。
その後、グラフトポロジ構造と進化力学の両方をエンコードする時間ノード表現を、繰り返し学習パラダイムを用いてキャプチャするために、構造強化グラフ変換器を提案する。
実世界の4つのデータセットを用いて実験を行い、離散動的グラフ表現学習の領域におけるRSGTの優れた性能について評価した。
その結果,RSGTは動的リンク予測タスクにおいて競合する手法を一貫して上回っていることがわかった。
関連論文リスト
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
我々は,動的グラフニューラルネットワーク(GNN)を高速に説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、各スナップショットでグラフの表現を抽出する。
また,事前指導型正規化を実現するために,コントラスト学習技術によるアプローチも強化する。
論文 参考訳(メタデータ) (2023-10-25T05:26:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
論文 参考訳(メタデータ) (2023-02-22T12:59:38Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
DYnamic graph(TADDY)のためのトランスフォーマーを用いた新しい異常検出フレームワークを提案する。
本フレームワークは,進化するグラフストリームにおいて,各ノードの構造的役割と時間的役割をよりよく表現するための包括的ノード符号化戦略を構築する。
提案するTADDYフレームワークは,4つの実世界のデータセットに対して,最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-18T02:27:19Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。